Journal of Nanoparticle Research

, Volume 13, Issue 7, pp 2929–2938 | Cite as

Nano-structuring of PTFE surface by plasma treatment, etching, and sputtering with gold

  • Alena Reznickova
  • Zdenka Kolska
  • Vladimir Hnatowicz
  • Vaclav Svorcik
Research paper


Properties of pristine, plasma modified, and etched (by water and methanol) polytetrafluoroethylene (PTFE) were studied. Gold nanolayers sputtered on this modified PTFE have been also investigated. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Degradation of polymer chains was examined by etching of plasma modified PTFE in water or methanol. The amount of ablated and etched layer was measured by gravimetry. In the next step the pristine, plasma modified, and etched PTFE was sputtered with gold. Changes in surface morphology were observed using atomic force microscopy. Chemical structure of modified polymers was characterized by X-ray photoelectron spectroscopy (XPS). Surface chemistry of the samples was investigated by electrokinetic analysis. Sheet resistance of the gold layers was measured by two-point technique. The contact angle of the plasma modified PTFE decreases with increasing exposure time. The PTFE amount, ablated by the plasma treatment, increases with the plasma exposure time. XPS measurements proved that during the plasma treatment the PTFE macromolecular chains are degraded and oxidized and new –C–O–C–, –C=O, and –O–C=O groups are created in modified surface layer. Surface of the plasma modified PTFE is weakly soluble in methanol and intensively soluble in water. Zeta potential and XPS shown dramatic changes in PTFE surface chemistry after the plasma exposure, water etching, and gold deposition. When continuous gold layer is formed a rapid decrease of the sheet resistance of the gold layer is observed.


Polytetrafluoroethylene Plasma Ablation Surface properties Etching Gold sputtering Thin layer 



This work was supported by the GA CR under the projects 106/09/0125 and 108/10/1106, Ministry of Education of the CR under program LC 06041, and AS CR under the projects KAN400480701 and KAN200100801 and from specific ICT University Research MSMT 062/2010.


  1. Barr TL (1994) Modern ESCA. CRC Press, Boca RatonGoogle Scholar
  2. Chopra K (1969) Thin film phenomena. Wiley, New YorkGoogle Scholar
  3. Gerenser LJ (1993) XPS Studies of in situ plasam-modified polymer. J Adhes Sci Technol 7:1019–1040CrossRefGoogle Scholar
  4. Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compunds. Prog Polym Sci 32:698–725CrossRefGoogle Scholar
  5. Hiemenz P, Rajagopalan R (1997) Principles of colloid and surface chemistry. Marcel Dekker, New YorkGoogle Scholar
  6. Kaune G, Ruderer MA, Metwalli E, Wang W, Couet S, Schlage K, Röhlsberger R, Roth SV, Müller-Buschbaum P (2009) In situ GISAXS study of gold film growth on conducting polymer films. ACS Appl Mater Interfaces 1:353–362CrossRefGoogle Scholar
  7. Kotál V, Švorčík V, Slepička P, Sajdl P, Bláhová O, Hnatowicz V (2007) Gold coating of poly(ethylene terephthalate) modified by argon plasma. Plasma Process Polym 4:69–76CrossRefGoogle Scholar
  8. Liu CZ, Wu JQ, Ren LQ, Tong J, Li JQ, Cui N et al (2004) Comparative study on the effect of RF and DBD plasma treatment on PTFE surface modification. Mater Chem Phys 85:340–346CrossRefGoogle Scholar
  9. Nakao S, Ando T, Shikida M, Satol K (2006) Mechanical properties of a micron-sized SCS film in a high-temperature environment. J Micromech Microeng 16:715–720CrossRefGoogle Scholar
  10. Nazabal V, Fargin E, Labrugere C, Le Flem G (2000) Second harmonic generation optimization in thermally poled borophosphate glasses and characterization by XANES and XPS. J Non Cryst Solids 270:223–233CrossRefGoogle Scholar
  11. Noh JH, Baik HK, Noh I, Park J, Lee I (2007) Surface modification of PTFE using atmospheric pressure plasma jet for medical application. Surf Coat Technol 201:5097–5101CrossRefGoogle Scholar
  12. Okubo M, Tahara M, Saeki N, Yamamoto T (2008) Surface modification of fluorocarbon polymer films for improved adhesion using atmospheric-pressure nonthermal plasma graft-polymerization. Thin Solid Films 516:6592–6597CrossRefGoogle Scholar
  13. Řezníčková A, Kolská Z, Hnatowicz V, Stopka P, Švorčík V (2011) Comparison of glow argon plasma-induced surface changes of thermoplastic polymers. Nucl Instrum Methods B 269:83–88Google Scholar
  14. Siegel J, Řezníčková A, Chaloupka A, Slepička P, Švorčík V (2008) Ablation and water etching of plasma treated polymers. Radiat Eff Defect Solid 163:779–788Google Scholar
  15. Slepička P, Švorčík V, Šlouf M, Rybka V, Špirková M (2008) Characterization of metal nanolayers sputtered on poly(ethyleneterephtalate). Optoel Adv Mater Commun 2:153–160Google Scholar
  16. Slepička P, Kolská Z, Náhlík J, Hnatowicz V, Švorčík V (2009) Properties of Au nanolayers on polyethylene and polytetrafluoroethlene. Surf Interface Anal 41:741–745CrossRefGoogle Scholar
  17. Stutzmann N, Tervort TA, Bastiaansen K, Smith P (2000) Patterning of polymer-supported metal films by microcutting. Nature 407:613–616CrossRefGoogle Scholar
  18. Švorčík V, Zehentner J, Rybka V, Slepička P, Hnatowicz V (2002) Characterization of thin gold layers on PET: transition from discontinuous to continuous, homogenous layer. Appl Phys A 75:541–544CrossRefGoogle Scholar
  19. Švorčík V, Kotál V, Slepička P, Bláhová O, Špírková M, Sajdl P et al (2006a) Modification of surface properties of PE by Ar plasma discharge. Nucl Instrum Methods B 244:365–372CrossRefGoogle Scholar
  20. Švorčík V, Kotál V, Slepička P, Bláhová O, Šutta P, Hnatowicz V (2006b) Gold coating of PE modified by argon plasma discharge. Polym Eng Sci 46:1326–1332CrossRefGoogle Scholar
  21. Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V (2006c) Modification of surface properties of high and low density PE by Ar plasma discharge. Polym Degrad Stab 91:1219–1225CrossRefGoogle Scholar
  22. Švorčík V, Kotál V, Siegel J, Sajdl P, Macková A, Hnatowicz V (2007) Ablation and water etching of poly(ethylene) modified by argon plasma. Polym Degrad Stab 97:1645–1649Google Scholar
  23. Švorčík V, Chaloupka A, Záruba K, Král V, Bláhová O, Macková A (2009a) Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment. Nucl Instrum Methods B 267:2484–2488CrossRefGoogle Scholar
  24. Švorčík V, Kasálková N, Slepička P, Záruba K, Bačáková L, Pařízek M et al (2009b) Cytocompatibility of Ar plasma-treated and Au nanoparticle-grafted PE. Nucl Instrum Methods B 267:1904–1910CrossRefGoogle Scholar
  25. Švorčík V, Kolská Z, Luxbacher T, Mistrík J (2010a) Properties of Au nanolayer sputtered on polyethyleneterphtalate. Mater Lett 64:1160–1162CrossRefGoogle Scholar
  26. Švorčík V, Řezníčková A, Kolská Z, Slepička P (2010b) Variable surface properties of PTFE foils. e-Polymers 133:1–6Google Scholar
  27. Tahara M, Cuong NK, Nakashima Y (2003) Improvement in adhesion of polyethylene by glow-discharge plasma. Surf Coat Technol 174:826–830CrossRefGoogle Scholar
  28. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochim Acta B 61:2–30CrossRefGoogle Scholar
  29. Wang S, Li J, Suo J, Luo T (2010) Surface modification of porous poly(tetrafluoroethylene) by a simple chemical oxidation treatment. Appl Surf Sci 256:2293–2298CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Alena Reznickova
    • 1
  • Zdenka Kolska
    • 2
  • Vladimir Hnatowicz
    • 3
  • Vaclav Svorcik
    • 1
  1. 1.Department of Solid State EngineeringInstitute of Chemical Technology PraguePragueCzech Republic
  2. 2.Department of ChemistryJ.E. Purkyně UniversityUsti nad LabemCzech Republic
  3. 3.Nuclear Physics InstituteAcademy of Sciences of the Czech RepublicRezCzech Republic

Personalised recommendations