Journal of Nanoparticle Research

, Volume 13, Issue 7, pp 2893–2908 | Cite as

Colloidal stability of silver nanoparticles in biologically relevant conditions

Research paper

Abstract

Understanding the colloidal stability of nanoparticles (NPs) plays a key role in phenomenological interpretation of toxicological experiments, particularly if single NPs or their aggregates or agglomerates determine the dominant experimental result. This report examines a variety of instrumental techniques for surveying the colloidal stability of aqueous suspensions of silver nanoparticles (AgNPs), including atomic force microscopy, dynamic light scattering, and colorimetry. It was found that colorimetry can adequately determine the concentration of single AgNPs that remained in solution if morphological information about agglomerates is not required. The colloidal stability of AgNPs with various surface capping agents and in various solvents ranging from cell culture media to different electrolytes of several concentrations, and in different pH conditions was determined. It was found that biocompatible bulky capping agents, such as bovine serum albumin or starch, that provided steric colloidal stabilization, as opposed to purely electrostatic stabilization such as with citrate AgNPs, provided better retention of single AgNPs in solution over a variety of conditions for up to 64 h of observation.

Keywords

Silver nanoparticles BSA-coated nanoparticles Nanomaterial dispersion protocol Nanomaterial characterization 

Supplementary material

11051_2010_178_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1242 kb)

References

  1. (2006) Standard Reference Material 927d, Bovine serum albumin (7% solution). Accessed 9 Aug. 2009Google Scholar
  2. (2008a) Reference Material 8011, Gold nanoparticles, nominal 10 nm diameter. https://www-s.nist.gov/srmors/view_report.cfm?srm=8011
  3. (2008b) Reference Material 8012, Gold nanoparticles, nominal 30 nm diameter. https://www-s.nist.gov/srmors/view_report.cfm?srm=8012
  4. (2008c) Reference Material 8013, Gold nanoparticles, nominal 60 nm diameter. https://www-s.nist.gov/srmors/view_report.cfm?srm=8013
  5. (2010a) FIFRA scientific advisory panel meeting: evaluation of the hazard and exposure associated with nanosilver and other nanometal pesticide products. http://www.epa.gov/scipoly/sap/meetings/2009/november/110309ameetingminutes.pdf. Accessed 26 July 2010
  6. (2010b) FY 2007 regulatory support activities. http://www.fda.gov/AboutFDA/CentersOffices/CDRH/CDRHReports/ucm126688.htm. Accessed 26 July 2010
  7. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong YL (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410CrossRefGoogle Scholar
  8. Banerjee IA, Yu LT, MacCuspie RI, Matsui H (2004) Thiolated peptide nanotube assembly as arrays on patterned Au substrates. Nano Lett 4:2437–2440CrossRefGoogle Scholar
  9. Blaser SA, Scheringer M, MacLeod M, Hungerbuhler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409CrossRefGoogle Scholar
  10. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21:9303–9307CrossRefGoogle Scholar
  11. Burleigh TD, Gu Y, Donahey G, Vida M, Waldeck DH (2001) Tarnish protection of silver using a hexadecanethiol self-assembled monolayer and descriptions of accelerated tarnish tests. Corrosion 57:1066–1074CrossRefGoogle Scholar
  12. Carey Lea M (1889) On allotropic forms of silver. Am J Sci 37:476–491Google Scholar
  13. Cedervall T, Lynch I, Foy M, Berggad T, Donnelly SC, Cagney G, Linse S, Dawson KA (2007a) Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed 46:5754–5756CrossRefGoogle Scholar
  14. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007b) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055CrossRefGoogle Scholar
  15. Chen Z, Xie S, Shen L, Du Y et al (2008) Investigation of the interactions between silver nanoparticles and Hela cells by scanning electrochemical microscopy. Analyst 133:1221–1228CrossRefGoogle Scholar
  16. Dobrovoiskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, Mcneil SE (2008) Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–2187CrossRefGoogle Scholar
  17. Dobrovolskaia MA, Patri AK, Zheng JW, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, Mcneil SE (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomed Nanotechnol Biol Med 5:106–117CrossRefGoogle Scholar
  18. Duan J, Park K, MacCuspie RI, Vaia RA, Pachter R (2009) Optical properties of rodlike metallic nanostructures: insight from theory and experiment. J Phys Chem C 113:15524–15532. doi:10.1021/jp902448f CrossRefGoogle Scholar
  19. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRefGoogle Scholar
  20. Erickson B (2009a) Nanosilver pesticides. Chem Eng News 87:25–26Google Scholar
  21. Erickson BE (2009b) Nanosilver in the wash. Chem Eng News 87:12CrossRefGoogle Scholar
  22. Figueroa JAL, Wrobel K, Afton S, Caruso JA, Corona JFG, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091CrossRefGoogle Scholar
  23. Gao XY, Yu LT, MacCuspie RI, Matsui H (2005) Controlled growth of Se nanoparticles on Ag nanoparticles in different ratios. Adv Mater 17:426CrossRefGoogle Scholar
  24. Gardner GE, Jones MG (2009) Bacteria buster: testing antibiotic properties of silver nanoparticles. Am Biol Teach 71:231–234CrossRefGoogle Scholar
  25. Garrett RH, Grisham CM (1999) Biochemistry, 2nd edn. Saunders College Publishing, Fort WorthGoogle Scholar
  26. Gaul LE, Taud AH (1935) Clinical spectroscopy: seventy cases of generalized argyrosis following organic and colloidal silver medication, including a biospectrometric analysis of ten cases. J Am Med Assoc 104:1387–1390Google Scholar
  27. Goldstein HI (1921) Argyria from argyrol. J Am Med Assoc 77:1514Google Scholar
  28. Grobelny J, DelRio FW, Pradeep N, Kim D-I, Hackley VA, Cook RF (2009) NIST—NCL joint assay protocol, PCC-6: size measurement of nanoparticles using atomic force microscopy. http://ncl.cancer.gov/working_assay-cascade.asp
  29. Hackley VA, Clogston JD (2007) NIST—NCL joint assay protocol PCC-1: measuring the size of nanoparticles in aqueous media using batch-mode dynamic light scattering. http://ncl.cancer.gov/assay_cascade.asp
  30. Harper S, Usenko C, Hutchison JE, Maddux BLS, Tanguay RL (2008a) In vivo biodistribution and toxicity depends on nanomaterial composition, size, surface functionalisation and route of exposure. J Exp Nanosci 3:195–206CrossRefGoogle Scholar
  31. Harper SL, Dahl JA, Maddux BLS, Tanguay RL, Hutchison JE (2008b) Proactively designing nanomaterials to enhance performance and minimise hazard. Int J Nanotechnol 5:124–142CrossRefGoogle Scholar
  32. Height MJ (2009) Evaluation of hazard and exposure associated with nanosilver and other nanometal oxide pesticide products. http://www.regulations.gov/search/Regs/contentStreamer?objectId=0900006480a52512&disposition=attachment&contentType=pdf
  33. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539CrossRefGoogle Scholar
  34. Hussain SM, Schlager JJ (2009) Safety evaluation of silver nanoparticles: inhalation model for chronic exposure. Toxicol Sci 108:223–224CrossRefGoogle Scholar
  35. Izatt RM, Bradshaw JS, Nielsen SA, Lamb JD, Christensen JJ, Sen D (1985) Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 85:271–339. doi:10.1021/cr00068a003 CrossRefGoogle Scholar
  36. Jiang L, Saetre P, Jazin E, Carlstrom E (2009) Haloperidol changes mRNA expression of a QKI splice variant in human astrocytoma cells. BMC Pharmacol 9:6–10. doi:10.1186/1471-2210-9-6 CrossRefGoogle Scholar
  37. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim J, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242CrossRefGoogle Scholar
  38. Kramer RM, Li C, Carter DC, Stone MO, Naik RR (2004) Engineered protein cages for nanomaterial synthesis. J Am Chem Soc 126:13282–13286CrossRefGoogle Scholar
  39. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834CrossRefGoogle Scholar
  40. Kvitek L, Vanickova M, Panacek A, Soukupova J et al (2009) Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem C 113:4296–4300CrossRefGoogle Scholar
  41. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRefGoogle Scholar
  42. Leonov AP, Zheng JW, Clogston JD, Stern ST, Patri AK, Wei A (2008) Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano 2:2481–2488CrossRefGoogle Scholar
  43. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  44. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175. doi:10.1021/es9035557 CrossRefGoogle Scholar
  45. Lucas M, Leach AM, McDowell MT, Hunyadi SE, Gall K, Murphy CJ, Riedo E (2008) Plastic deformation of pentagonal silver nanowires: comparison between AFM nanoindentation and atomistic simulations. Phys Rev B 77:245420CrossRefGoogle Scholar
  46. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270CrossRefGoogle Scholar
  47. Lynch I, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3:40–47CrossRefGoogle Scholar
  48. Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174CrossRefGoogle Scholar
  49. MacCuspie RI, Banerjee IA, Pejoux C, Gummalla S, Mostowski HS, Krause PR, Matsui H (2008a) Virus assay using antibody-functionalized peptide nanotubes. Soft Matter 4:833–839CrossRefGoogle Scholar
  50. MacCuspie RI, Nuraje N, Lee SY, Runge A, Matsui H (2008b) Comparison of electrical properties of viruses studied by AC capacitance scanning probe microscopy. J Am Chem Soc 130:887–891CrossRefGoogle Scholar
  51. MacCuspie RI, Allen AJ, Hackleky VA (2010a) Dispersion stabilization of silver nanoparticles in synthethetic lung fluid studied under in situ conditions. Nanotoxicology. doi:10.3109/17435390.2010.504311
  52. MacCuspie RI, Elsen AM, Diamanti SJ, Patton ST, Altfeder I, Jacobs JD, Voevodin AA, Vaia RA (2010b) Purification—chemical structure—electrical property relationship in gold nanoparticle liquids. Appl Organomet Chem 24:590–599. doi:10.1002/aoc.1632 CrossRefGoogle Scholar
  53. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP (2001) Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc 123:1471–1482. doi:10.1021/ja003312a CrossRefGoogle Scholar
  54. Maynard A (2009) Project on emerging nanotechnologies. Woodrow Wilson International Center for Scholars. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed 12 March 2010
  55. Muniz G, Banerjee IA, Yu LT, Djalali R, Matsui H (2005) Controlled nanocrystal growth on sequence peptide coated nanotubes to fabricate Au, Ag, and Ge nanowires. Abstr Papers Am Chem Soc 229:U1154Google Scholar
  56. Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554CrossRefGoogle Scholar
  57. Nadagouda MN, Varma RS (2007) Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 8:2762–2767CrossRefGoogle Scholar
  58. Nadagouda MN, Varma RS (2008a) Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B-2: catalytic polymerisation of aniline and pyrrole. J Nanomater. doi:10.1155/2008/782358
  59. Nadagouda MN, Varma RS (2008b) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859–862CrossRefGoogle Scholar
  60. Nadagouda MN, Varma RS (2008c) Microwave-assisted shape-controlled bulk synthesis of Ag and Fe nanorods in poly(ethylene glycol) solutions. Cryst Growth Des 8:291–295CrossRefGoogle Scholar
  61. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172CrossRefGoogle Scholar
  62. Nam KT, Lee YJ, Krauland EM, Kottmann ST, Belcher AM (2008) Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2:1480–1486. doi:10.1021/nn800018n CrossRefGoogle Scholar
  63. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  64. Nuraje N, Banerjee IA, MacCuspie RI, Yu LT, Matsui H (2004) Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. J Am Chem Soc 126:8088–8089CrossRefGoogle Scholar
  65. Nuraje N, Su K, Samson J, Haboosheh A, MacCuspie RI, Matsui H (2006) Self-assembly of Au nanoparticle-containing peptide nano-rings on surfaces. Supramol Chem 18:429–434CrossRefGoogle Scholar
  66. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, IthacaGoogle Scholar
  67. Perelaer J, Hendriks CE, de Laat AWM, Schubert US (2009) One-step inkjet printing of conductive silver tracks on polymer substrates. Nanotechnology 20:165303CrossRefGoogle Scholar
  68. Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V (2008) A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2:144–154CrossRefGoogle Scholar
  69. Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196Google Scholar
  70. Rahman MF, Wang J, Patterson TA, Saini UT et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21CrossRefGoogle Scholar
  71. Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133CrossRefGoogle Scholar
  72. Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129CrossRefGoogle Scholar
  73. Schack W (1960) Art and argyrol. The life and career of Dr. Albert C. Barnes. Thomas Yoseloff Press, New YorkGoogle Scholar
  74. Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141CrossRefGoogle Scholar
  75. Slocik JM, Tam F, Halas NJ, Naik RR (2007) Peptide-assembled optically responsive nanoparticle complexes. Nano Lett 7:1054–1058CrossRefGoogle Scholar
  76. Tao CG, Cullen WG, Williams ED, Hunyadi SE, Murphy CJ (2007) Surface morphology and step fluctuations on Ag nanowires. Surf Sci 601:4939–4943CrossRefGoogle Scholar
  77. Tien DC, Tseng KH, Liao CY, Huang JC, Tsung TT (2008) Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J Alloys Compd 463:408–411CrossRefGoogle Scholar
  78. Tomczak MM, Slocik JM, Stone MD, Naik RR (2007) Bio-based approaches to inorganic material synthesis. Biochem Soc Trans 35:512–515CrossRefGoogle Scholar
  79. Tomczak MM, Slocik JM, Stone MO, Naik RR (2008) Biofunctionalized nanoparticles and their uses. MRS Bull 33:519–523CrossRefGoogle Scholar
  80. Tsai D-H, DelRio FW, MacCuspie RI, Cho TJ, Zachariah M, Hackley VA (2010) Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir 26:10325–10333. doi:10.1021/la100484a CrossRefGoogle Scholar
  81. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  82. Voevodin AA, Vaia RA, Patton ST, Diamanti S et al (2007) Nanoparticle-wetted surfaces for relays and energy transmission contacts. Small 3:1957–1963CrossRefGoogle Scholar
  83. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345CrossRefGoogle Scholar
  84. Wiesner MR, Lowry GV, Jones KL, Hochella MF, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462. doi:10.1021/es803621k CrossRefGoogle Scholar
  85. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI et al (2009) Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRefGoogle Scholar
  86. Yen H-J, Hsu S-h, Tsai C-L (2009) Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5:1553–1561. doi:10.1002/smll.200900126 CrossRefGoogle Scholar
  87. Yeo MK, Yoon JW (2009) Comparison of the effects of nano-silver antibacterial coatings and silver ions on zebrafish embryogenesis. Mol Cell Toxicol 5:23–31Google Scholar
  88. Yu LT, Banerjee IA, Matsui H (2003) Direct growth of shape-controlled nanocrystals on nanotubes via biological recognition. J Am Chem Soc 125:14837–14840CrossRefGoogle Scholar
  89. Zheng N, Fan J, Stucky GD (2006) One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J Am Chem Soc 128:6550–6551CrossRefGoogle Scholar
  90. Zook JM, MacCuspie RI, Locascio LE, Elliott JE (2010) Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their sizes on hemolytic cytotoxicity. Nanotoxicology. doi:10.3109/17435390.2010.536615

Copyright information

© Springer Science+Business Media B.V. (outside the USA)  2010

Authors and Affiliations

  1. 1.National Institute of Standards and Technology, Ceramics DivisionGaithersburgUSA

Personalised recommendations