Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2609–2623 | Cite as

Liposome-encapsulated EF24-HPβCD inclusion complex: a preformulation study and biodistribution in a rat model

  • H. Agashe
  • P. Lagisetty
  • K. Sahoo
  • D. Bourne
  • B. Grady
  • V. AwasthiEmail author
Research Paper


3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24) is an anti-proliferative diphenyldifluoroketone analog of curcumin with more potent activity. The authors describe a liposome preparation of EF24 using a “drug-in-CD-in liposome” approach. An aqueous solution of EF24 and hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complex (IC) was used to prepare EF24 liposomes. The liposome size was reduced by a combination of multiple freeze–thaw cycles. Co-encapsulation of glutathione inside the liposomes conferred them with the capability of labeling with imageable radionuclide Tc-99m. Phase solubility analysis of EF24-HPβCD mixture provided k 1:1 value of 9.9 M−1. The enhanced aqueous solubility of EF24 (from 1.64 to 13.8 mg/mL) due to the presence of HPβCD helped in the liposome preparation. About 19% of the EF24 IC was encapsulated inside the liposomes (320.5 ± 2.6 nm) by dehydration–rehydration technique. With extrusion technique, the size of 177 ± 6.5 nm was obtained without any effect on encapsulation efficiency. The EF24-liposomes were evaluated for anti-proliferative activity in lung adenocarcinoma H441 and prostate cancer PC-3 cells. The EF24-liposomes demonstrated anti-proliferative activity superior to that of plain EF24 at 10 μM dose. When injected in rats, the Tc-99m-labeled EF24-liposomes cleared from blood with an α-t 1/2 of 21.4 min and β-t 1/2 of 397 min. Tissue radioactivity counting upon necropsy showed that the majority of clearance was due to the uptake in liver and spleen. The results suggest that using “drug-in-CD-in liposome” approach is a feasible strategy to formulate an effective parenteral preparation of EF24. In vitro studies show that the liposomal EF24 remains anti-proliferative, while presenting an opportunity to image its biodistribution.


Curcumin Hydroxypropyl-β-cyclodextrin Liposomes EF24 Inclusion complex Nanomedicine 



The authors acknowledge the help of Ms. Prachi Vilekar (Graduate Student) in cell culture studies. The radiolabeling and biodistribution study was performed in the Small Animal Imaging Facility of the College of Pharmacy. This study was made possible by the financial support under the National Cancer Institute grant 1R03 CA143614-01.


  1. Adams BK, Cai J, Armstrong J, Herold M, Lu YJ, Sun A, Snyder JP, Liotta DC, Jones DP, Shoji M (2005) EF24, a novel synthetic curcumin analog, induces apoptosis in cancer cells via a redox-dependent mechanism. Anticancer Drugs 16:263–275CrossRefGoogle Scholar
  2. Akerley W, Choy H (1999) Single-agent paclitaxel and radiation for non-small cell lung cancer. Semin Radiat Oncol 9:85–89Google Scholar
  3. American Cancer Society (2009) Cancer Statistics 2009 Presentation. American Cancer Society.
  4. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818CrossRefGoogle Scholar
  5. Anderson M, Omri A (2004) The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv 11:33–39CrossRefGoogle Scholar
  6. Awasthi V, Goins B, Klipper R, Loredo R, Korvick D, Phillips WT (1998) Imaging experimental osteomyelitis using radiolabeled liposomes. J Nucl Med 39:1089–1094Google Scholar
  7. Awasthi VD, Garcia D, Goins BA, Phillips WT (2003) Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm 253:121–132CrossRefGoogle Scholar
  8. Awasthi VD, Garcia D, Klipper R, Goins BA, Phillips WT (2004a) Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. J Pharmacol Exp Ther 309:241–248CrossRefGoogle Scholar
  9. Awasthi VD, Garcia D, Klipper R, Phillips WT, Goins BA (2004b) Kinetics of liposome-encapsulated hemoglobin after 25% hypovolemic exchange transfusion. Int J Pharm 283:53–62CrossRefGoogle Scholar
  10. Awasthi V, Yee SH, Jerabek P, Goins B, Phillips WT (2007) Cerebral oxygen delivery by liposome-encapsulated hemoglobin: a positron-emission tomographic evaluation in a rat model of hemorrhagic shock. J Appl Physiol 103:28–38CrossRefGoogle Scholar
  11. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother 46:828–833CrossRefGoogle Scholar
  12. Bhardwaj U, Burgess DJ (2010) Physicochemical properties of extruded and non-extruded liposomes containing the hydrophobic drug dexamethasone. Int J Pharm 388:181–189CrossRefGoogle Scholar
  13. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59:645–666CrossRefGoogle Scholar
  14. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6:E329–E357CrossRefGoogle Scholar
  15. Fatouros DG, Hatzidimitriou K, Antimisiaris SG (2001) Liposomes encapsulating prednisolone and prednisolone-cyclodextrin complexes: comparison of membrane integrity and drug release. Eur J Pharm Sci 13:287–296CrossRefGoogle Scholar
  16. Frank DW (1976) Physiological data of laboratory animals. In: Melby ECJ (ed) Physiological data of laboratory animals. CRC Press, Boca Raton, FL, pp 23–64Google Scholar
  17. Frijlink HW, Visser J, Hefting NR, Oosting R, Meijer DK, Lerk CF (1990) The pharmacokinetics of beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin in the rat. Pharm Res 7:1248–1252CrossRefGoogle Scholar
  18. Goins B, Klipper R, Rudolph AS, Cliff RO, Blumhardt R, Phillips WT (1993) Biodistribution and imaging studies of technetium-99m-labeled liposomes in rats with focal infection. J Nucl Med 34:2160–2168Google Scholar
  19. Gould S, Scott RC (2005) 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol 43:1451–1459CrossRefGoogle Scholar
  20. Higuchi T, Connors K (1965) Phase solubility techniques. Adv Anal Chem Instrum 4:127–212Google Scholar
  21. Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon induced by administration of PEGylated liposome. Yakugaku Zasshi 128:233–243CrossRefGoogle Scholar
  22. Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22:197–224CrossRefGoogle Scholar
  23. Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H (2007) PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release 122:349–355CrossRefGoogle Scholar
  24. Kasinski AL, Du Y, Thomas SL, Zhao J, Sun SY, Khuri FR, Wang CY, Shoji M, Sun A, Snyder JP, Liotta D, Fu H (2008) Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 74:654–661CrossRefGoogle Scholar
  25. Kirby C, Gregoriadis G (1984) Dehydration–rehydration vesicles (DRV): a new method for high yield drug entrapment in liposomes. Biotechnology 979–984Google Scholar
  26. Kume Y, Maeda F, Harashima H, Kiwada H (1991) Saturable, non-Michaelis-Menten uptake of liposomes by the reticuloendothelial system. J Pharm Pharmacol 43:162–166CrossRefGoogle Scholar
  27. Lagisetty P, Powell DR, Awasthi V (2009) Synthesis and structural determination of 3,5-bis(2-fluorobenzylidene)-4-piperidone analogs of curcumin. J Mol Str 936:23–28CrossRefGoogle Scholar
  28. Landegren U (1984) Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods 67:379–388CrossRefGoogle Scholar
  29. Laverman P, Boerman OC, Oyen WJG, Corstens FHM, Storm G (2001) In vivo applications of PEG liposomes: unexpected observations. Critical reviews in therapeutic drug carrier systems 18:551–566Google Scholar
  30. Laverman P, Boerman OC, Storm G (2003) Radiolabeling of liposomes for scintigraphic imaging. Methods Enzymol 373:234–248CrossRefGoogle Scholar
  31. Loftsson T, Hreinsdottir D, Masson M (2005a) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28CrossRefGoogle Scholar
  32. Loftsson T, Jarho P, Masson M, Jarvinen T (2005b) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351CrossRefGoogle Scholar
  33. McCormack B, Gregoriadis G (1994) Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J Drug Target 2:449–454CrossRefGoogle Scholar
  34. McCormack B, Gregoriadis G (1996) Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-beta-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery. Biochim Biophys Acta 1291:237–244Google Scholar
  35. McCormack B, Gregoriadis G (1998) Drugs-in-cyclodextrins-in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo. Int J Pharm 162:59–69CrossRefGoogle Scholar
  36. Petty C (1982) Research techniques in the rats. Charles C. Thomas, Springfield, IL (USA)Google Scholar
  37. Phillips WT, Rudolph AS, Goins B, Timmons JH, Klipper R, Blumhardt R (1992) A simple method for producing a technetium-99m-labeled liposome which is stable in vivo. Nucl Med Biol 19:539–547Google Scholar
  38. Piel G, Piette M, Barillaro V, Castagne D, Evrard B, Delattre L (2007) Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int J Pharm 338:35–42CrossRefGoogle Scholar
  39. Selvendiran K, Tong L, Vishwanath S, Bratasz A, Trigg NJ, Kutala VK, Hideg K, Kuppusamy P (2007) EF24 induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by increasing PTEN expression. J Biol Chem 282:28609–28618CrossRefGoogle Scholar
  40. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900Google Scholar
  41. Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14CrossRefGoogle Scholar
  42. Subramaniam D, May R, Sureban SM, Lee KB, George R, Kuppusamy P, Ramanujam RP, Hideg K, Dieckgraefe BK, Houchen CW, Anant S (2008) Diphenyl difluoroketone: a curcumin derivative with potent in vivo anticancer activity. Cancer Res 68:1962–1969CrossRefGoogle Scholar
  43. Sun A, Shoji M, Lu YJ, Liotta DC, Snyder JP (2006) Synthesis of EF24-tripeptide chloromethyl ketone: a novel curcumin-related anticancer drug delivery system. J Med Chem 49:3153–3158CrossRefGoogle Scholar
  44. Szebeni J (1998) The interaction of liposomes with the complement system. Crit Rev Ther Drug Carrier Syst 15:57–88Google Scholar
  45. Szebeni J, Baranyi L, Savay S, Bodo M, Morse DS, Basta M, Stahl GL, Bunger R, Alving CR (2000) Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol 279:H1319–H1328Google Scholar
  46. Walde P, Ichikawa S (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomol Eng 18:143–177CrossRefGoogle Scholar
  47. Woodle MC, Newman MS, Working PK (1995) Biological properties of sterically stabilized liposomes. In: Lasic DD, Martin F (eds) Stealth liposomes. CRC Press, Boca Raton, pp 103–117Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • H. Agashe
    • 1
  • P. Lagisetty
    • 1
  • K. Sahoo
    • 1
  • D. Bourne
    • 1
  • B. Grady
    • 2
  • V. Awasthi
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.School of Chemical, Biological and Materials EngineeringNormanUSA

Personalised recommendations