Cytotoxicity and fluorescence studies of silica-coated CdSe quantum dots for bioimaging applications
- 409 Downloads
- 15 Citations
Abstract
The toxicological effects of silica-coated CdSe quantum dots (QDs) were investigated systematically on human cervical cancer cell line. Trioctylphosphine oxide capped CdSe QDs were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane as silica precursor. The cytotoxicity studies were conducted by exposing cells to freshly synthesized QDs as a function of time (0–72 h) and concentration up to micromolar level by Lactate dehydrogenase assay, MTT [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] assay, Neutral red cell viability assay, Trypan blue dye exclusion method and morphological examination of cells using phase contrast microscope. The in vitro analysis results showed that the silica-coated CdSe QDs were nontoxic even at higher loadings. Subsequently the in vivo fluorescence was also demonstrated by intravenous administration of the QDs in Swiss albino mice. The fluorescence images in the cryosections of tissues depicted strong luminescence property of silica-coated QDs under biological conditions. These results confirmed the role of these luminescent materials in biological labeling and imaging applications.
Keywords
Quantum dots Cytotoxicity Semiconductors Luminescence Silica-coating Health safety EHSNotes
Acknowledgments
We gratefully acknowledge Department of Biotechnology, Ministry of Science and Technology, Govt. of India, New Delhi, for the financial assistance as research grant (Order No.BT/PR9904/NNT/28/63/2007) given to Dr. Annie Abraham, Principal Investigator, DBT project; Dr. K. George Thomas, Scientist, National Institute of Interdisciplinary Science and Technology (CSIR), Trivandrum, India for supplying nanomaterials; UGC, Govt. of India for the research fellowship to Vinayakan R; Dr. Jamuna, Institute of English, University of Kerala, India for proof reading.
Supplementary material
References
- Bakalova R, Zhelev Z, Aoki I, Ohba H, Imai Y, Kanno I (2006) Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality. Anal Chem 78:5925–5932. doi: 10.1021/ac060412b CrossRefGoogle Scholar
- Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86. doi: 10.1021/bc034153y CrossRefGoogle Scholar
- Biju V, Itoh T, Anas A, Sujith A, Ishikawa M (2008) Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem 391:2469–2495. doi: 10.1007/s00216-008-2185-7 CrossRefGoogle Scholar
- Brant J, Lecoanet H, Hotze M, Wiesner M (2005) Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environ Sci Technol 39:6343–6351. doi: 10.1021/es050090d CrossRefGoogle Scholar
- Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832. doi: 10.1021/nl049170q CrossRefGoogle Scholar
- Choi HS, Liu W, Misra P et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170. doi: 10.1038/nbt1340 CrossRefGoogle Scholar
- Darbandi M, Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17:5720–5725. doi: 10.1021/cm051467h CrossRefGoogle Scholar
- De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20:4225–4241. doi: 10.1002/adma.200703183 CrossRefGoogle Scholar
- Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi: 10.1021/nl0347334 CrossRefGoogle Scholar
- Freshney RI (1993) Culture of animal cells: a manual of basic technique, 3rd edn. Wiley-Liss, New York, p 496Google Scholar
- Garcia AV, Clarke RC, Rahn K, Durette A, MacLeod DL, Gyles CL (1993) Neutral red assay for measurement of quantitative vero cell cytotoxicity. Appl Envir Microbiol 59:1981–1983Google Scholar
- Guo G, Liu W, Liang J, He Z, Xu H, Yang X (2007) Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644. doi: 10.1016/j.matlet.2006.07.105 CrossRefGoogle Scholar
- Han R, Yu M, Zheng Q, Wang L, Hong Y, Sha Y (2009) A facile synthesis of small-sized, highly photoluminescent, and monodisperse CdSeS QD/SiO2 for live cell imaging. Langmuir 25:12250–12255. doi: 10.1021/la9016596 CrossRefGoogle Scholar
- Hardman R (2006) A toxicological review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165–172. doi: 10.1289/ehp.8284 CrossRefGoogle Scholar
- Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T et al (2004a) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi: 10.1021/nl048715d CrossRefGoogle Scholar
- Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004b) Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 314:46–53. doi: 10.1016/j.bbrc.2003.11.185 CrossRefGoogle Scholar
- Isakovic A, Markovic Z, Nikolic N, Todorovic-Markovic B, Vranjes-Djuric S, Harhaji L et al (2006) Inactivation of nanocrystalline C60 cytotoxicity by [gamma]-irradiation. Biomaterials 27:5049–5058. doi: 10.1016/j.biomaterials.2006.05.047 CrossRefGoogle Scholar
- Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338. doi: 10.1021/nl047996m CrossRefGoogle Scholar
- Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964. doi: 10.1002/adma.200500786 CrossRefGoogle Scholar
- Kroll A, Pillukat MH, Hahn D, Schnekenburger J (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377. doi: 10.1016/j.ejpb.2008.08.009 CrossRefGoogle Scholar
- Legrand C (1992) Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol 25:231–243. doi: 10.1016/0168-1656(92)90158-6 CrossRefGoogle Scholar
- Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL (2006) C60-fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechno l4:14. doi: 10.1186/1477-3155-4-14 CrossRefGoogle Scholar
- Li D, Li GP, Guo WW, Li PC, Wang EK, Wang J (2008) Glutathione-mediated release of functional plasmid DNA from positively charged quantum dots. Biomaterials 29:2776–2782. doi: 10.1016/j.biomaterials.2008.03.007 CrossRefGoogle Scholar
- Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234. doi: 10.1016/j.chembiol.2005.09.008 CrossRefGoogle Scholar
- Monteiro-Riviere NA, Inman AO, Zhang LW (2008) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235. doi: 10.1016/j.taap.2008.09.030 CrossRefGoogle Scholar
- Mosmann TJ (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
- Pellegrino T, Kudera S, Liedl T, Javier AM, Manna L, Parak WJ (2005) On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 1:48–63. doi: 10.1002/smll.200400071 CrossRefGoogle Scholar
- Peng XA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184. doi: 10.1021/ja003633m CrossRefGoogle Scholar
- Pic E, Pons T, Bezdetnaya L, Leroux A, Guillemin F, Dubertret B, Marchal F (2009) Fluorescence imaging and whole-body biodistribution of near-infrared-emitting quantum dots after subcutaneous injection for regional lymph node mapping in mice. Mol Imaging Biol 12(4):394–405. doi: 10.1007/s11307-009-0288-y CrossRefGoogle Scholar
- Richard ML, Rivkah IR, Edward CG (1992) Quantitative in vitro assessment of phototoxicity by a fibroblast-neutral red assay. J Invest Dermato 98:725–729. doi: 10.1111/1523-1747.ep12499927 CrossRefGoogle Scholar
- Santone KS, Acosta D, Bruckner JV (1982) Cadmium toxicity in primary cultures of rat hepatocytes. J Toxicol Environ Health 10:169–177. doi: 10.1080/15287398209530240 CrossRefGoogle Scholar
- Selvan ST, Patra PK, Ang CY, Ying JY (2007) Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed 46:2448–2452. doi: 10.1002/anie.200604245 CrossRefGoogle Scholar
- Smith AM, Nie S (2004) Chemical analysis and cellular imaging with quantum dots. Analyst 129:672–677. doi: 10.1021/bc800172q CrossRefGoogle Scholar
- Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw Hill, New York, p 201Google Scholar
- Vinayakan R, Shanmugapriya T, Nair PV, Ramamurthy P, Thomas KG (2007) An approach for optimizing the shell thickness of core-shell quantum dots using photoinduced charge transfer. J. Phys. Chem. C 111:10146–10149. doi: 10.1021/jp072823h CrossRefGoogle Scholar
- Yu WW, Qu L, Guo W, Peng X (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 15:3125–3133. doi: 10.1021/cm034341y CrossRefGoogle Scholar