Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2533–2541 | Cite as

Fabrication of silver nanoparticles in a continuous flow, low temperature microwave-assisted polyol process

Research Paper

Abstract

The performed experiments showed that continuous microwave-assisted polyol synthesis at about 70 °C is a viable process to give silver nanoparticles with a narrow size distribution in bulk amounts. The increase of silver precursor concentration in reaction system from 0.0097 to 0.0389 M resulted in the formation of fine nanoparticles 5–10 nm in size, in addition to the larger ones 30–100 nm, and that changed the pattern of particle size distribution from monomodal to bimodal. The effect of specific process variables was found to be the same in the continuous process as in batch operation. An aqueous glycerol solution was found suitable for use as both solvent and reducing agent.

Keywords

Nanoparticles Silver Microwaves Polyol process Synthesis 

Notes

Acknowledgments

The author gratefully acknowledge the Polish Ministry for Science and Higher Education for support for this work under grant R14 02602. We also appreciate Prof. Jozef Lelatko for TEM images and helpful discussions.

References

  1. Bhattacharyya S, Gedanken A (2008) Microwave-assisted insertion of silver nanoparticles into 3-D mesoporous zinc oxide nanocomposites and nanorods. J Phys Chem C 112:659–665. doi:10.1021/jp0760253 CrossRefGoogle Scholar
  2. Bonnemann H, Botha SS, Bladergroen B, Linkov VM (2005) Monodisperse copper- and silver-nanocolloids suitable for heat-conductive fluids. Appl Organomet Chem 19:768–773. doi:10.1002/aoc.889 CrossRefGoogle Scholar
  3. Buongiorno J, Venerus DC, Dzido G, Jarzebski AB et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312. doi:10.1063/1.3245330 CrossRefGoogle Scholar
  4. Cho T, Baek I, Lee J, Park S (2005) Preparation of nanofluid containing suspended silver particles for enhancing fluid thermal conductivity of fluids. J Ind Eng Chem 11(3):400–406Google Scholar
  5. Dzido G, Chmiel-Kurowska K, Gierczycki A, Jarzębski AB (2008) Convective heat transfer in Ag– and Cu–ethylene glycol nanofluids. NSTI Nanotechnology Conference, Boston, 2008. Tech Proc 1:778–781Google Scholar
  6. Filippo E, Serra A, Manno D (2009) Poly(vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sens Actuators B 138:625–630. doi:10.1016/j.snb.2009.02.056 CrossRefGoogle Scholar
  7. Gao F, Lu Q, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860. doi:10.1021/cm048663t CrossRefGoogle Scholar
  8. Glasnov TN, Kappe CO (2007) Microwave-assisted synthesis under continuous-flow conditions. Macromol Rapid Commun 28:395–410. doi:10.1002/marc.200600665 CrossRefGoogle Scholar
  9. Groisman Y, Gedenken A (2008) Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J Phys Chem C 112:8802–8808. doi:10.1021/jp801409t CrossRefGoogle Scholar
  10. Jiang H, Moon K, Zhang Z, Pothukuchi S, Wong CP (2006) Variable frequency microwave synthesis of silver nanoparticles. J Nanopart Res 8:117–124. doi:10.1007/s11051-005-7522-6 CrossRefGoogle Scholar
  11. Khaydarov RA, Khaydarov RR, Gapurova O, Estrin Y, Scheper T (2009) Electrochemical method for the synthesis of silver nanoparticles. J Nanopart Res 11:1193–1200. doi:10.1007/s11051-008-9513-x CrossRefGoogle Scholar
  12. Komarneni S, Pidugu R, Li QH, Roy R (1995) Microwave-hydrothermal processing of metal powders. J Mater Res 10:1687–1692CrossRefGoogle Scholar
  13. Kundu S, Wang K, Liang H (2009) Size-controlled synthesis and self-assembly of silver nanoparticles within a minute using microwave irradiation. J Phys Chem C 113:134–141. doi:10.1021/jp808292s CrossRefGoogle Scholar
  14. Li D, Komarneni S (2006) Microwave-assisted polyol process for synthesis of Ni nanoparticles. J Am Ceram Soc 89:1510–1517. doi:10.1111/j1551-2916.2006 CrossRefGoogle Scholar
  15. Loginov AV, Gorbunova VV, Boitsova TB (2002) Photochemical synthesis and properties of colloidal copper, silver and gold adsorbed on quartz. J Nanopart Res 4:193–205. doi:10.1023/A:1019966021598 CrossRefGoogle Scholar
  16. Manoth M, Manzoor K, Patra MK, Pandey P, Vadera SR, Kumar N (2009) Dendrigraft polymer-based synthesis of silver nanoparticles showing bright blue fluorescence. Mat Res Bull 44:714–717. doi:10.1016/j.materresbull.2008.06.033 Google Scholar
  17. Martinez-Castanon GA, Ninio-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348. doi:10.1007/s11051-008-9428-6 CrossRefGoogle Scholar
  18. Mourdikoudis S, Simeonidis K, Tsiaoussis I, Dendrinou-Samara C, Angelakeris M, Kalogriou O (2009) Impact of synthesis parameters on structural and magnetic characteristics of Co-based nanoparticles. J Nanopart Res 11:1477–1484. doi:10.1007/s11051-008-9428-6 CrossRefGoogle Scholar
  19. Pastoriza-Santos I, Liz-Marzan LM (2002) Formation of PVP-protected metal nanoparticles in DMF. Langmuir 18:2888–2894. doi:10.1021/la015578g CrossRefGoogle Scholar
  20. Petit Ch, Lixonf P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983. doi:10.1021/j100151a054 CrossRefGoogle Scholar
  21. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi:10.1016/j.biotechadv.2008.09.002 CrossRefGoogle Scholar
  22. Stadler A, Yousefi BH, Dallinger D, Walla P, Eycken E, Kaval N, Kappe CO (2003) Scalability of microwave–assisted organic synthesis. From single- mode to multimode parallel batch reactors. Org Proc Res Dev 7:707–716. doi:10.1021/op034075+ CrossRefGoogle Scholar
  23. Starowicz M, Stypuła B, Banaś J (2006) Electrochemical synthesis of silver nanoparticles. Electrochem Commun 8:227–230. doi:10.1016/j.elecom.2005.11.018 CrossRefGoogle Scholar
  24. Sun Y, Xia Y (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-ending, polyol process. Adv Mater 14(11):833–837CrossRefGoogle Scholar
  25. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452. doi:10.1002/chem.200400417 CrossRefGoogle Scholar
  26. Tu W, Liu H (2000) Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem Mater 12:564–567. doi:10.1021/cm990637l CrossRefGoogle Scholar
  27. Wu Ch, Zeng T (2005) Size-tunable synthesis of metallic nanoparticles in a continuous and steady-flow reactor. Chem Mater 19(2):123–125. doi:10.1021/cm062344f CrossRefGoogle Scholar
  28. Xie Y, Ye R, Liu H (2006) Synthesis of silver nanoparticles in reverse micelles stabilized by natural biosurfactant. Colloids Surf A Physicochem Eng Aspects 279:175–178CrossRefGoogle Scholar
  29. Zhang J, Chen P, Sun Ch, Hu X (2004) Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl Catal A 266:49–54. doi:10.1016/j.apcata.2004.01.025 CrossRefGoogle Scholar
  30. Zhang W, Qiao X, Chen J (2008) Formation of silver nanoparticles in SDS inverse microemulsions. Mat Chem Phys 109:411–416. doi:10.1016/j.matchemphys.2007.12.009 CrossRefGoogle Scholar
  31. Zhua H, Zhang C, Yin Y (2004) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Crystal Growth 270:722–728. doi:10.1016/j.jcrysgro.2004.07.008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemical and Processing EngineeringSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Chemical EngineeringPolish Academy of SciencesGliwicePoland

Personalised recommendations