Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2509–2523 | Cite as

Poly(amidehydroxyurethane) template magnetite nanoparticles electrosynthesis: I. Electrochemical aspects and identification

Research Paper

Abstract

A new method for the electrochemical synthesis and surface-functionalization of magnetite nanoparticles (NPs) with poly(amidehydroxyurethane) (PAmHU) is presented. Transmission Electron Microscopy shows the formation of NPs PAmHU cluster systems with individual NPs ranging in size from 6 to 42 nm. Electron Spectroscopy for Chemical Analysis, Electron Paramagnetic Resonance measurements, and X-ray Diffraction show that the electrochemically synthesized product contains NPs formed by a core-coating polymer system with an inner-core consisting of magnetite entities with crystallites dimensions within 6 to 11 nm. The resulting functionalized NPs are water-soluble and stable for months.

Keywords

Magnetite NPs Electrochemical synthesis Polymer matrices 

Notes

Acknowledgments

This study was supported by CNCSIS–UEFISCSU, 509 PNII–IDEI 1996/2008. The authors also gratefully acknowledge professor M.-O. Apostu for a critical reading of the article.

References

  1. Altintaş EB, Uzun L, Denizli A (2007) Synthesis and characterization of monosize magnetic poly(glycidyl methacrylate) beads. China Part 5:174–179CrossRefGoogle Scholar
  2. Apostu M, Melnig V (2006) Tunable temperature behaviour of water-soluble polyamidhydroxyurethane. J Optoelectron Adv Mater 8:1044–1047Google Scholar
  3. Balko B, Hoy GR (1977) Selective excitation double Mössbauer studies (SEDM) of electron hopping in magnetite (Fe3O4). Physica B & C 86–88:953–954CrossRefGoogle Scholar
  4. Bergemann C, Muller-Schulte D, Osterb J, à Brassardb L, Lübbe AS (1999) Magnetic ion-exchange nano- and microparticles for medical, biochemical and molecular biological applications. J Magn Magn Mater 194:45–52CrossRefGoogle Scholar
  5. Berry CC (2005) Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. J Mater Chem 15:543–547CrossRefGoogle Scholar
  6. Bourceanu G, Melnig V, Vatamanu J, Vasiliu R (1998) Mechanism of electrochemical oscillations in the system Fe/H2SO4(aq), K2Cr2O7(aq)/Pt. Electrochim Acta 43:1031–1043CrossRefGoogle Scholar
  7. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, WeinheimGoogle Scholar
  8. Darken LS, Gurry RW (1946) The system iron-oxygen: II. Equilibrium and thermodynamics of liquid oxide and other phases. J Am Chem Soc 68:798–816CrossRefGoogle Scholar
  9. Droubay T, Chambers SA (2001) Surface-sensitive Fe 2p photoemission spectra for α-Fe2O3(0001): the influence of symmetry and crystal-field strength. Phys Rev B 64:205414–205419CrossRefGoogle Scholar
  10. Elmore WC (1938) Ferromagnetic colloid for studying magnetic structures. Phys Rev 54:309–310CrossRefGoogle Scholar
  11. Franger S, Berthet P, Berthon J (2004) Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J Solid State Electrochem 8:218–223CrossRefGoogle Scholar
  12. Franger S, Berthet P, Dragos O (2007) Large influence of the synthesis conditions on the physico-chemical properties of nanostructured Fe3O4. J Nanopart Res 9:389–402CrossRefGoogle Scholar
  13. Frimpong RA, Hilt JZ (2008) Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization. Nanotechnology 19:175101–175108CrossRefGoogle Scholar
  14. Fujii T, de Groot FMF, Sawatzky GA, Voogt FC, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195–3202CrossRefGoogle Scholar
  15. Gao S, Shi Y, Zhang S, Jiang K, Yang S, Li Z, Takayama-Muromachi E (2008) Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties. J Phys Chem C 112:10398–10401CrossRefGoogle Scholar
  16. Gazit O, Khalfin R, Cohen Y, Tannenbaum R (2009) Self-assembled diblock copolymer “nanoreactors” as “catalysts” for metal nanoparticle synthesis. J Phys Chem C 113:576–583CrossRefGoogle Scholar
  17. Ge S, Shi X, Sun K, Li C, Uher C, Baker JR Jr, Banaszak Holl MM, Orr BG (2009) Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C 113:13593–13599CrossRefGoogle Scholar
  18. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS (2004a) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRefGoogle Scholar
  19. Grosvenor AP, Kobe BA, McIntyre N (2004b) Studies of the oxidation of iron by air after being exposed to water vapour using angle-resolved x-ray photoelectron spectroscopy and QUASESS. Surf Interface Anal 36:1637–1641CrossRefGoogle Scholar
  20. Gupta RP, Sen SK (1974) Calculation of multiplet structure of core p-vacancy levels. Phys Rev B 10:71–77CrossRefGoogle Scholar
  21. Gupta RP, Sen SK (1975) Calculation of multiplet structure of core p-vacancy levels. II. Phys Rev B 12:15–19CrossRefGoogle Scholar
  22. Hergt R, Andrä W, d’Ambly CG, Hilger I, Kaiser WA, Richter U, Schmidt HG (1998) Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Magn 34:3745–3754CrossRefGoogle Scholar
  23. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919–S2934CrossRefGoogle Scholar
  24. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 20:385214–385226CrossRefGoogle Scholar
  25. Knauth M, Egelhof T, Roth SU, Wirtz CR, Sartor K (2001) Monocrystalline iron oxide nanoparticles: Possible solution to the problem of surgically induced intracranial contrast enhancement in intraoperative MR imaging. Am J Neuroradiol 22:99–102Google Scholar
  26. Koetz J, Kosmella S (2007) Polyelectrolytes and nanoparticles. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar
  27. Krause MO, Oliver JH (1979) Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J Phys Chem Ref Data 8:329–338CrossRefGoogle Scholar
  28. Landfester K, Ramirez LP (2003) Encapsulated magnetite particles for biomedical application. J Phys Condens Matter 15:S1345–S1361CrossRefGoogle Scholar
  29. Lee J, Isobe T, Lenna M (1996) Magnetic properties of ultrafine magnetite particles and their slurries prepared via in situ precipitation. Colloids Surf A 109:121–127CrossRefGoogle Scholar
  30. Lewis DG (1997) Factors influencing the stability and properties of green rusts. Adv Geoecol 30:345–372Google Scholar
  31. Liu ZL, Wang HB, Lu QH, Du GH, Peng L, Du YQ, Zhang SM, Yao KL (2004) Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. J Magn Magn Mater 283:258–262CrossRefGoogle Scholar
  32. Liu Z, Zhang D, Han S, Li C, Lei B, Lu W, Fang J, Zhou C (2005) Single crystalline magnetite nanotubes. J Am Chem Soc 127:6–7CrossRefGoogle Scholar
  33. Liu X, Novosad V, Rozhkova EA, Chen H, Yefremenko V, Pearson J, Torno M, Bader SD, Rosengart AJ (2007) Surface functionalized biocompatible magnetic nanospheres for cancer hyperthermia. IEEE Trans Magn 43:2462–2464CrossRefGoogle Scholar
  34. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529CrossRefGoogle Scholar
  35. Melnig V, Ciobanu C (2005) Characterization of water-soluble polyamidhydroxyurethane for biological applications. J Optoelectron Adv Mater 7:2809–2815Google Scholar
  36. Melnig V, Tarus B, Frangopol PT, Sandulovici M (1998) An oscillatory electrochemical phenomenon observed in the anodic dissolution of iron in sulphuric acid solution with potassium dichromate. Rev Roum Chim 43:831–840Google Scholar
  37. Melnig V, Pohoata V, Obreja L, Garlea A, Cazacu M (2006) Water-soluble polyamidhydroxyuretane swelling behaviour. J Optoelectron Adv Mater 8:1040–1043Google Scholar
  38. Misawa T, Hasimoto K, Shimodaira S (1973) Formation of Fe(II)-Fe(III) intermediate green complex on oxidation of ferrous iron in neutral and slightly alkaline sulphate solution. J Inorg Nucl Chem 35:4167–4174CrossRefGoogle Scholar
  39. Mycroft JR, Nesbitt HW, Pratt AR (1995) X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: distribution of oxidized species with depth. Geochim Comochim Acta 59:721–733CrossRefGoogle Scholar
  40. Mykhaylyk O, Cherchenko A, Ilkin A, Dudchenko N, Ruditsa V, Novoseletz M, Zozulya Yu (2001) Glial brain tumor targeting of magnetite nanoparticles in rats. J Magn Magn Mater 225:241–247CrossRefGoogle Scholar
  41. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430CrossRefGoogle Scholar
  42. Nath S, Kaittanis C, Ramachandran V, Dalal NS, Perez JM (2009) Synthesis, magnetic characterization, and sensing applications of novel dextran-coated iron oxide nanorods. Chem Mater 21:1761–1767CrossRefGoogle Scholar
  43. Olowe AA, Genin JMR (1991) Mechanism of oxidation of ferrous hydroxide in sulphated aqueous media. Importance of the initial ratio of the reactants. Corros Sci 32:965–984CrossRefGoogle Scholar
  44. Olowe AA, Pauron B, Genin JMR (1991) Influence of temperature on the oxidation of ferrous hydroxide in sulphated aqueous medium. Activation energies of formation of the products and hyperfine structure of magnetite. Corros Sci 32:985–1001CrossRefGoogle Scholar
  45. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  46. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:R15–R27CrossRefGoogle Scholar
  47. Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanopart Res 8:489–496CrossRefGoogle Scholar
  48. Sarrazin J, Verdaguer M (1991) L ‘oxydoréduction, concepts et expériences. Ellipses, ParisGoogle Scholar
  49. Scherrer P (1918) Bestimmung der grösse und der inneren struktur von. kolloidteilchen mittels röntgenstrahlen. Gött Nachr 2:98–100Google Scholar
  50. Schwertmann U, Taylor RM (1977) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 145–179Google Scholar
  51. Sidhu PS, Gilkes RJ, Posner AM (1977) Mechanism of the low temperature oxidation of synthetic magnetites. J Inorg Nucl Chem 39:1953–1958CrossRefGoogle Scholar
  52. Siles-Dotor MG, Bokhimi MA, Benaissa M, Cabral-Prieto A (1997) Synthesis of nanostructured goethite and magnetite particles from the oxidation of Fe(OH)2 in a high-oxygen-flow-rate medium. Nanostruct Mater 8:657–673CrossRefGoogle Scholar
  53. Swaddle TW, Oltmann P (1980) Kinetics of magnetite-maghemite-hematite transformation, with special reference to hydrothermal systems. Can J Chem 58:1763–1772CrossRefGoogle Scholar
  54. Taton TA (2002) Nanostructures as tailored biological probes. Trends Biotechnol 20:277–279CrossRefGoogle Scholar
  55. Tsouris C, Depaoli DW, Shor JT, Hu MZC, Ying TY (2001) Electrocoagulation for magnetic seeding of colloidal particles. Colloids Surf A 177:223–233CrossRefGoogle Scholar
  56. Visalakshi G, Venkateswaran G, Kulshreshtha SK, Moorthy PN (1993) Compositional characteristics of magnetite synthesised from aqueous solutions at temperatures up to 523°K. Mater Res Bull 28:829–836CrossRefGoogle Scholar
  57. Weil JA, Bolton JR (2007) Electron paramagnetic resonance: elementary theory and practical application. Wiley, New JerseyGoogle Scholar
  58. Welo LA, Baudisch O (1925) The two-stage transformation of magnetite into hematite. Philos Mag 50:399–408. www.lasurface.com. Accessed 25 July 2009Google Scholar
  59. Yoshida J, Kobayashi TJ (1999) Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 194:176–184CrossRefGoogle Scholar
  60. Zhang R, Wang X, Wu C, Song M, Li J, Lv G, Zhou J, Chen C, Dai Y, Gao F, Fu D, Li X, Guan Z, Chen B (2006) Synergistic enhancement effect of magnetic nanoparticles on anticancer drug accumulation in cancer cells. Nanotechnology 17:3622–3626CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of PhysicsAl. I. Cuza UniversityIasiRomania

Personalised recommendations