Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 53–58 | Cite as

Low temperature synthesis of iron containing carbon nanoparticles in critical carbon dioxide

  • Takashi Hasumura
  • Takahiro Fukuda
  • Raymond L. D. Whitby
  • Ortrud Aschenbrenner
  • Toru Maekawa
Brief Communication


We develop a low temperature, organic solvent-free method of producing iron containing carbon (Fe@C) nanoparticles. We show that Fe@C nanoparticles are self-assembled by mixing ferrocene with sub-critical (25.0 °C), near-critical (31.0 °C) and super-critical (41.0 °C) carbon dioxide and irradiating the solutions with UV laser of 266-nm wavelength. The diameter of the iron particles varies from 1 to 100 nm, whereas that of Fe@C particles ranges from 200 nm to 1 μm. Bamboo-shaped structures are also formed by iron particles and carbon layers. There is no appreciable effect of the temperature on the quantity and diameter distributions of the particles produced. The Fe@C nanoparticles show soft ferromagnetic characteristics. Iron particles are crystallised, composed of bcc and fcc lattice structures, and the carbon shells are graphitised after irradiation of electron beams.


Nanoparticles Carbon Iron Ferrocene Critical carbon dioxide UV laser Composite nanomaterials 



Part of this study has been supported by a Grant for the High-Tech Research Centres organised by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, since 2006. T. Fukuda would like to thank MEXT for their financial support.

Supplementary material

11051_2010_142_MOESM1_ESM.pdf (437 kb)
Supplementary Material 1 (PDF 436 kb)


  1. Alexandrescu R, Cojocaru S, Crunteanu A, Morjan I, Voicu I, Diamandescu L, Vasiliu F, Huisken F, Kohn B (1990) Preparation of iron carbide and iron nanoparticles by laser induced gas phase pyrolysis. J Phys IV France 90:Pr8-537–Pr8-544Google Scholar
  2. Alexandrescu R, Morjan I, Crunteanu A, Cojocaru S, Petcu S, Teodorescu V, Huisken F, Kohn B, Ehbrecht M (1998) Iron-oxide-based nanoparticles produced by pulsed laser pyrolysis of Fe(CO)5. Mater Chem Phys 55:115–121CrossRefGoogle Scholar
  3. Bhushan B (2007) Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 84:387–412CrossRefGoogle Scholar
  4. Borysiuk J, Grabias A, Szczytko J, Bystrzejewski M, Twardowski A, Lange H (2008) Structure and magnetic properties of carbon encapsulated Fe nanoparticles obtained by arc plasma and combustion synthesis. Carbon 46:1693–1701CrossRefGoogle Scholar
  5. Buerki PR, Leutwyler S (1991) Homogeneous nucleation of diamond powder by CO2 laser driven gas-phase reactions. J Appl Phys 69:3739–3744CrossRefGoogle Scholar
  6. Buerki PR, Leutwyler S (1994) CO2-laser-induced vapor-phase synthesis of HN-diamond nanoparticles at 0.6–2 bar. Nanostruct Mater 4:577–582CrossRefGoogle Scholar
  7. Elihn K, Otten F, Boman M, Heszler P, Kruis FE, Fissan H, Carlsson J-O (2001) Size distributions and synthesis of nanoparticles by photolytic dissociation of ferrocene. Appl Phys A 72:29–34CrossRefGoogle Scholar
  8. Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184CrossRefGoogle Scholar
  9. Fuertes AB, Valdés-Solís T, Sevilla M (2008) Fabrication of monodisperse mesoporous carbon capsules decorated with ferrite nanoparticles. J Phys Chem C 112:3648–3654CrossRefGoogle Scholar
  10. Fukuda T, Ishii K, Kurosu S, Whitby R, Maekawa T (2007a) Formation of clusters composed of C60 molecules via self-assembly in critical fluids. Nanotechnology 18:145611CrossRefGoogle Scholar
  11. Fukuda T, Maekata T, Hasumura T, Rantonen N, Ishii K, Nakajima Y, Hanajiri T, Yoshida Y, Whitby R, Mikhalovsky S (2007b) Dissociation of carbon dioxide and creation of carbon particles and films at room temperature. New J Phys 9:321CrossRefGoogle Scholar
  12. Fukuda T, Watabe N, Whitby R, Maekawa T (2007c) Creation of carbon onions and coils at low temperature in near-critical benzene irradiated with an ultraviolet laser. Nanotechnology 18:415604CrossRefGoogle Scholar
  13. Gao C, Li W, Morimoto H, Nagaoka Y, Maekawa T (2006) Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in the biomanipulations. J Phys Chem B 110:7213–7220CrossRefGoogle Scholar
  14. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353CrossRefGoogle Scholar
  15. Hasumura T, Fukuda T, Whitby RLD, Aschenbrenner O, Maekawa T (2010) Low temperature synthesis of fibres composed of carbon–nickel nanoparticles in super-critical carbon dioxide. Chem Phys Lett 493:304–308CrossRefGoogle Scholar
  16. Heszler P, Elihn K, Boman M, Carlson J-O (2000) Optical characterisation of the photolytic decomposition of ferrocene into nanoparticles. Appl Phys A 70:613–616Google Scholar
  17. Jarlborg T, Peter M (1984) Electronic structure, magnetism and curie temperatures in Fe, Co and Ni. J Magn Magn Mater 42:89–99CrossRefGoogle Scholar
  18. Kim JH, Kim J, Lim SK, Kim CK, Yoon CS (2007) Synthesis of monolayered Ni–Fe alloy nanoparticles based on nanotemplate approach. J Magn Magn Mater 310:2402–2404CrossRefGoogle Scholar
  19. Kozhuharova R, Ritschel M, Elefant D, Graff A, Mönch I, Mühl T, Schneider CM, Leonhardt A (2005) (FexCo1-x)-alloy filled vertically aligned carbon nanotubes grown by thermal chemical vapor deposition. J Magn Magn Mater 290–291:250–253CrossRefGoogle Scholar
  20. Li F, Yang J, Xue D, Zhou R (1995) X-ray diffraction and Mossbauer studies of the (Fe1-xNix)4N compounds (0 ≤ x ≤ 0.5). J Magn Magn Mater 151:221–224CrossRefGoogle Scholar
  21. Li C, Thostenson ET, Chou TW (2008) Sensors and actuators based on carbon nanotubes and their composites: a review. Compos Sci Technol 68:1227–1249CrossRefGoogle Scholar
  22. Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43:369–374CrossRefGoogle Scholar
  23. Maekawa T, Ishii K, Shiroishi Y, Azuma H (2004) Onset of buoyancy convection in a horizontal layer of a supercritical fluid heated from below. J Phys A Math Gen 37:7955–7969 (and references cited therein)CrossRefGoogle Scholar
  24. Majima T, Miyahara T, Haneda K, Ishii T, Takami M (1994) Preparation of iron ultrafine particles by the dielectric breakdown of Fe(CO)5 using a transversely excited atmospheric CO2 laser and their characteristics. Jpn J Appl Phys 33:4759–4763CrossRefGoogle Scholar
  25. Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R, Maekawa T (2010) Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun 393:779–782CrossRefGoogle Scholar
  26. Morimoto H, Ukai T, Nagaoka Y, Grobert N, Maekawa T (2008) Tumbling motion of magnetic particles on a magnetic substrate induced by a rotational magnetic field. Phys Rev E 78:021403CrossRefGoogle Scholar
  27. Ouchi A, Tsunoda T, Bastl Z, Marysko M, Vorlicek V, Bohacek J, Vacek K, Pola J (2005) Solution photolysis of ferrocene into Fe-based nanoparticles. J Photochem Photobiol A Chem 171:251–256CrossRefGoogle Scholar
  28. Park JB, Jeong SH, Jeong MS, Kim JY, Cho BK (2008) Synthesis of carbon-encapsulated magnetic nanoparticles by pulsed laser irradiation of solution. Carbon 46:1369–1377CrossRefGoogle Scholar
  29. Park KC, Wang F, Morimoto S, Fujishige M, Morisako A, Liu X, Kim YJ, Jung YC, Jang IY, Endo M (2009) One-pot synthesis of iron oxide–carbon core–shell particles in supercritical water. Mater Res Bull 44:1443–1450CrossRefGoogle Scholar
  30. Pol VG, Motiei M, Gedanken A, Calderon-Moreno J, Mastai Y (2003) Sonochemical deposition of air-stable iron nanoparticles on monodispersed carbon spherules. Chem Mater 15:1378–1384CrossRefGoogle Scholar
  31. Rantonen NJK, Toyabe T, Maekawa T (2008) Catalyst-free growth of needle-shaped carbon filaments at low temperature in a near-critical binary fluid. Carbon 46:1225–1231CrossRefGoogle Scholar
  32. Ray U, Hou HQ, Zhang Z, Schwarz W, Vernon M (1989) A crossed laser-molecular beam study of the one and two photon dissociation dynamics of ferrocene at 193 and 248 nm. J Chem Phys 90:4248–4257CrossRefGoogle Scholar
  33. Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single crystal metals encapsulated in carbon nanoparticles. Science 29:346–348CrossRefGoogle Scholar
  34. Somayajulu GR (1989) Estimation procedures for critical constants. J Chem Eng Data 34:106–120CrossRefGoogle Scholar
  35. Stanley HE (1971) Introduction to phase transition and critical phenomena. Oxford University Press, OxfordGoogle Scholar
  36. Strobel R, Pratsinis SE (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Technol 20:190–194CrossRefGoogle Scholar
  37. Wallenberger FT (1997) Inorganic fibres and microfabricated parts by laser assisted chemical vapour deposition (LCVD): structures and properties. Ceram Int 23:119–126CrossRefGoogle Scholar
  38. Williamson DL, Bukshpan S, Ingalls R (1972) Search for magnetic ordering in hcp. Iron Phys Rev B 6:4194–4206CrossRefGoogle Scholar
  39. Xu ZF, Xie Y, Feng WL, Schaefer HF (2003) Systematic investigation of electronic and molecular structures for the first transition metal series metallocenes M(C5H5)2 (M = V, Cr, Mn, Fe, Co, and Ni). J Phys Chem A 107:2716–2729CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Takashi Hasumura
    • 1
  • Takahiro Fukuda
    • 1
  • Raymond L. D. Whitby
    • 2
  • Ortrud Aschenbrenner
    • 2
  • Toru Maekawa
    • 1
  1. 1.Bio-Nano Electronics Research Centre, Toyo UniversityKawagoeJapan
  2. 2.School of Pharmacy and Biomolecular SciencesUniversity of BrightonBrightonUK

Personalised recommendations