Journal of Nanoparticle Research

, Volume 13, Issue 6, pp 2485–2496

Effect of oxygen partial pressure and VO2 content on hexagonal WO3 thin films synthesized by pulsed laser deposition technique

Research Paper


We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1−x(VO2)x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2–WO3 thin film electrode with higher VO2 content (x ≥ 0.2). Increase of VO2 content in (WO3)1−x(VO2)x films leads to red shift in optical band gap.


WO3–VO2 Oxygen partial pressure Pulsed laser deposition Synthesis Nanolayers 


  1. Ashokkumar M, Maruthamuthu P (1989) Factors influencing the photocatalytic efficiency of WO3 particles. J Photochem Photobiol A Chem 49:249–258CrossRefGoogle Scholar
  2. Benthem KV, Tan G, Linda K, Noyer D, French RH, Ruhle M (2004) Local optical properties, electron densities, and London dispersion energies of atomically structured grain boundaries. Phys Rev Lett 93:227201–227204CrossRefGoogle Scholar
  3. Benthem KV, Tan G, French RH, Linda K, Noyer D, Podgornik R, Parsegian VA (2006) Graded interface models for more accurate determination of van der Waals—London dispersion interactions across grain boundaries. Phys Rev B 74:205110–205121CrossRefGoogle Scholar
  4. Christian GD, Purdy WC (1982) The residual current in orthophosphate medium. J Electroanal Chem 3:363–367CrossRefGoogle Scholar
  5. Cullity BD, Stock SR (2001) Elements of X-Ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  6. Didomenico M, Wemple SH (1969) Oxygen‐octahedra ferroelectrics. I. Theory of electro‐optical and nonlinear optical effects. J Appl Phys 40:720–734CrossRefGoogle Scholar
  7. Mitsugi F, Hiraiwa E, Ikegami T, Ebihara K (2003) Pulsed laser deposited WO3 thin films for gas sensor. Surf Coat Technol 169:553–556CrossRefGoogle Scholar
  8. Gerand B, Nowogrocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434CrossRefGoogle Scholar
  9. Gillet M, Lemire C, Gillet E, Aguir K (2003) The role of surface oxygen vacancies upon WO3 conductivity. Surf Sci 532:519–525CrossRefGoogle Scholar
  10. Gondal MA, Drmosh QA, Yamani ZH, Saleh TA (2009) Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl Surf Sci 256:298–304CrossRefGoogle Scholar
  11. Gondal MA, Drmosh QA, Saleh TA (2010) Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Appl Surf Sci 256:7067–7070CrossRefGoogle Scholar
  12. Granqvist CG (1990) Window coatings for the future. Thin Solid Films 193:730–741CrossRefGoogle Scholar
  13. Granqvist CG (1991) Energy-efficient windows: present and forthcoming technology in Material Science for Solar Energy Conversion Systems. Pergamon, Oxford, Chp. 5Google Scholar
  14. Granqvist CG, Avendano E, Azens A (2003) Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442:201–211CrossRefGoogle Scholar
  15. Gyorgy E, Socol G, Mihailescu IN, Ducu C, Ciuca S (2005) Structural and optical characterization of WO3 thin films for gas sensor applications. J Appl Phys 97:093527–093530CrossRefGoogle Scholar
  16. Hersh HN, Kramer WE, McGee JH (1975) Mechanism of electrochromism in WO3. Appl Phys Lett 27:646–648CrossRefGoogle Scholar
  17. Hussain OM, Swapnasmitha AS, John J, Pinto R (2005) Structure and morphology of laser-ablated WO3 thin films. Appl Phys A 81:1291–1297CrossRefGoogle Scholar
  18. Ingham B, Hendy SC, Chong SV, Tallon JL (2005) Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys Rev B 72:075109–075117CrossRefGoogle Scholar
  19. Ito K, Nakzaewa T (1983) Transparent and highly conductive films of ZnO prepared by RF sputtering. Jpn J Appl Phys 22:L245–L247CrossRefGoogle Scholar
  20. Jelle BP, Hagen G (1999) Performance of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide. Sol Energy Mater Sol Cells 58:277–286CrossRefGoogle Scholar
  21. Kaneko H, Nagao F, Miyake K (1988) Preparation and properties of the dc reactively sputtered tungsten oxide films. J Appl Phys 63:510–517CrossRefGoogle Scholar
  22. Kaur D, Jesudasan J, Raychaudhuri P (2005) Pulsed laser deposition of NdNiO3 thin films. Solid State Commun 136:369–374CrossRefGoogle Scholar
  23. Kumagai N, Kumagai N, Umetzu Y, Tanno K, Pereira-Ramos JP (1996) Synthesis of hexagonal form of tungsten trioxide and electrochemical lithium insertion into the trioxide. Solid State Ionics 86:1443–1449CrossRefGoogle Scholar
  24. Kumar A, Singh P, Kaur D, Jesudasan J, Raychaudhuri P (2006) Substrate effect on electrical transport properties of RNiO3 thin films prepared by pulsed laser deposition. J Phys D Appl Phys 39:5310–5315CrossRefGoogle Scholar
  25. Lee KH, Fang YK, Lee WJ, Ho JJ, Chen KH, Liao KS (2000) Novel electrochromic devices (ECD) of tungsten oxide (WO3) thin film integrated with amorphous silicon germanium photodetector for hydrogen sensor. Sens Actuators B 69:96–99CrossRefGoogle Scholar
  26. Lethy KJ, Beena D, Kumar RV, Pillai VPM, Ganesan V, Sathe V, Phase DM (2008) Nanostructured tungsten oxide thin films by the reactive pulsed laser deposition technique. Appl Phys A 91:637–649CrossRefGoogle Scholar
  27. Marquez E, Bernal-Oliva AM, Gonzalez-Leal JM, Pricto-Alcon R, Ledesma A, Jimenez-Garay R, Martil I (1999) Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1–1.8 eV). Mater Chem Phys 60:231–239CrossRefGoogle Scholar
  28. Ohring M (2002) Material science of thin films. Academic Press, San DiegoGoogle Scholar
  29. Ozer N, Lampert CM (1998) Electrochromic characterization of sol–gel deposited coatings. Sol Energy Mater Sol Cells 54:147–156CrossRefGoogle Scholar
  30. Pecquenard B, Lecacheux H, Livage J, Julien C (1998) Orthorhombic WO3 formed via a Ti-Stabilized WO3 \( \frac{1}{3} \)H2O Phase. J Solid State Chem 135:159–168CrossRefGoogle Scholar
  31. Pickering R, Tilley RJD (1976) An electron microscope study of tungsten oxides in the composition range WO2.90–2.72. J Solid State Chem 16:247–255CrossRefGoogle Scholar
  32. Poirier G, Cassanjes FC, Messaddeq Y, Ribeiro SJL (2009) Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses. J Non-Cryst Solids 355:441–446CrossRefGoogle Scholar
  33. Qu WM, Wlodarski W (2000) A thin-film sensing element for ozone, humidity and temperature. Sens Actuators B 64:42–48CrossRefGoogle Scholar
  34. Ranjbar M, Mahdavi SM, Iraji zad A (2008) Pulsed laser deposition of W-V-O composite films: Preparation, characterization and gasochromic studies. Sol Energy Mater Sol Cells 92:878–883CrossRefGoogle Scholar
  35. Regragui M, Jousseaume V, Addou M, Outzourhit A, Bernede JC, El Idrissi B (2001) Electrical and optical properties of WO3 thin films. Thin Solid Films 397:238–243CrossRefGoogle Scholar
  36. Robert GP, Ivan PP (2004) Aerosol assisted chemical vapour deposition of photochromic tungsten oxide and doped tungsten oxide thin films. J Mater Chem 14:2864–2867CrossRefGoogle Scholar
  37. Rougier A, Quede A (2001) Electrochromism of mixed tungusten-vanadium oxide thin films grown by pulsed laser deposition. J Electrochem Soc 148:H7–H12CrossRefGoogle Scholar
  38. Rougier A, Portemer F, Quede A, Marssi ME (1999) Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Appl Surf Sci 153:1–9CrossRefGoogle Scholar
  39. Rougier A, Blyr A, Garcia J, Zhang Q, Impey SA (2002) Electrochromic W-M-O (M=V, Nb) sol-gel thin films: a way to neutral colour. Sol Energy Mater Sol Cells 71:343–357CrossRefGoogle Scholar
  40. Sivakumar R, Gopalakrishnan R, Jayachandran M, Sanjeeviraja C (2007) Preparation and characterization of electron beam evaporated WO3 thin films. Opt Mat 29:679–687CrossRefGoogle Scholar
  41. Takami H, Kanki T, Ueda S, Kobayashi K, Tanaka H (2010) Electronic structure of W-doped VO2 thin films with giant metal–insulator transition investigated by hard X-ray core-level photoemission spectroscopy. Appl Phys Express 3:063201–063203CrossRefGoogle Scholar
  42. Tauc J (1974) Amorphous and liquid semiconductor. Plenium Press, New YorkGoogle Scholar
  43. Walkingshaw AD, Spaldin NA, Artacho E (2004) Density-functional study of charge doping in WO3. Phys Rev B 70:165110–165116CrossRefGoogle Scholar
  44. Wemple SH, Didomenico M (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3:1338–1351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Physics and Center of NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations