Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 839–850 | Cite as

Stability of aqueous silica nanoparticle dispersions

  • Cigdem O. Metin
  • Larry W. Lake
  • Caetano R. Miranda
  • Quoc P. Nguyen
Research Paper

Abstract

In this study, we present quantification methods for nanoparticle stability analysis using non-intrusive analytical techniques: attenuated total reflectance, Fourier transform infrared (ATR-FTIR) spectroscopy, ultraviolet–visible (UV–vis) spectrophotometer, zeta potential analyses, and dynamic light scattering (DLS). We use these techniques to study the stability of silica nanoparticle dispersions and the effects of pH, temperature, and electrolytes that would be encountered in oil field brines in a reservoir. Spectral analysis of the Si–O bond at wavenumber of 1110 cm−1 with the ATR-FTIR indicates a structural change on the surface of silica particles as the dispersion pH changes, which agrees with zeta potential measurements. We define a critical salt concentration (CSC) for different salts, NaCl, CaCl2, BaCl2, and MgCl2, above which the silica dispersion becomes unstable. Three distinct stages of aggregation occur in the presence of salt: clear dispersed, turbid, and separated phases. Divalent cations Mg2+, Ca2+, and Ba2+ are more effective in destabilizing silica nanoparticle dispersion than the monovalent cation Na+. The CSC for Na+ is about 100 times more than for Ca2+, Ba2+, and Mg2+. Among the divalent cations studied, Mg2+ is the most effective in destabilizing the silica particles. The CSC is independent of silica concentration, and lowers at high temperature.

Keywords

Silica nanoparticles Aqueous stability pH Temperature Electrolytes Aggregation 

References

  1. Asay DB, Kim SH (2005) Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B 109:16760–16763CrossRefGoogle Scholar
  2. ASTM Standard D 4187-82, Zeta Potential of Colloids in Water and Waste Water, 1985Google Scholar
  3. Colic M, Fisher ML, Franks GV (1998) Influence of ion size on short-range repulsive forces between silica surfaces. Langmuir 14:6107–6112CrossRefGoogle Scholar
  4. Derjaguin BV, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim USSR 14:633–662Google Scholar
  5. Dumont F (2006) Stability of sols: do the silica hydrosols obey the DLVO theory? In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 243–245Google Scholar
  6. Elimelech M, Gregory J, Jia X, Williams RA (1998) Particle deposition and aggregation: measurement modelling and simulation. Butterworth-Heinemann, WoburnGoogle Scholar
  7. Franks GV (2002) Zeta potentials and yield stresses of silica suspensions in concentrated monovalent electrolytes: isoelectric point shift and additional attraction. J Colloid Interface Sci 249:44–51CrossRefGoogle Scholar
  8. Hair ML (2006) Surface chemistry of silica. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 257–260Google Scholar
  9. Healy TW (2006) Stability of aqueous silica sols. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 247–252Google Scholar
  10. Hofmann U, Endell K, Wilm D (1934) Röntgeno-graphische und kolloidchemische Untersuchungen über Ton. Angew Chem 47:539–558CrossRefGoogle Scholar
  11. Hunter RJ (2001) Foundations of colloid science. Oxford University Press, New YorkGoogle Scholar
  12. Iler RK (1971) The chemistry of silica. Wiley, New YorkGoogle Scholar
  13. Israelachivili J, Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379:219–225CrossRefGoogle Scholar
  14. Jenkins S, Kirk SR, Persson M, Carlen J, Abbas Z (2007) Molecular dynamics simulation of nanocolloidal amorphous silica particles: part I. J Chem Phys 127:224711-1–224711-10CrossRefGoogle Scholar
  15. Jenkins S, Kirk SR, Persson M, Carlen J, Abbas Z (2008) Molecular dynamics simulation of nanocolloidal amorphous silica particles: part II. J Chem Phys 128:164711-1–164711-10CrossRefGoogle Scholar
  16. Kissa E (1999) Dispersions: characterizations testing, and measurement. Marcel Dekker, New YorkGoogle Scholar
  17. Kitchener JA (1971) General discussion. Faraday Disc 52:372–380CrossRefGoogle Scholar
  18. Lane JMD, Ismail AE, Chandross M, Lorenz CD, Grest GS (2009) Forces between functionalized silica nanoparticles in solution. Phys Rev E 79:050501CrossRefGoogle Scholar
  19. Mokhatab S, Fresky MA, Islam MR (2006) Applications of nanotechnology in oil and gas E&P. J Pet Technol Online 58:4Google Scholar
  20. Morrow BA, Molapo DT (2006) Infrared studies of chemically modified silica. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 287–294Google Scholar
  21. Plaza RC, Quirantes A, Delgado AV (2002) Stability of dispersions of colloidal hematite/yttrium oxide core–shell particles. J Colloid Interface Sci 252:102–108CrossRefGoogle Scholar
  22. Roberts WO (2006) Manufacturing and applications of waterborne colloidal silica. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 131–176Google Scholar
  23. Torrie GM, Kusalik PG, Patey GN (1989) Theory of the electrical double layer: ion size effects in a molecular solvent. J Chem Phys 91:6367–6375CrossRefGoogle Scholar
  24. Van Blaarderen A, Vrij A (2006) Synthesis and characterization of colloidal model particles mad from organoalkoxysilane. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton, pp 65–80Google Scholar
  25. Verwey EJW, Overbeek JThG (1948) Theory of stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  26. Yalamanchili MR, Atia AA, Miller JD (1996) Analysis of interfacial water at a hydrophilic silicon surface by in situ FTIR/internal reflection spectroscopy. Langmuir 12:4176–4184CrossRefGoogle Scholar
  27. Zhuravlev LT (1987) Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3:316–318CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Cigdem O. Metin
    • 1
  • Larry W. Lake
    • 1
  • Caetano R. Miranda
    • 2
  • Quoc P. Nguyen
    • 1
  1. 1.Petroleum and Geosystems Engineering DepartmentThe University of TexasAustinUSA
  2. 2.Universidade Federal do ABC (UFABC)—Centro de Ciências Naturais e HumanasSanto AndréBrazil

Personalised recommendations