Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 817–837 | Cite as

Preparation and properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles

  • K. Srinivas
  • S. Manjunath Rao
  • P. Venugopal ReddyEmail author
Research Paper

Abstract

With a view to study the structural, electronic, magnetic, and electrical properties of Zn0.9Ni0.1O diluted magnetic semiconductor nanoparticles, systematic investigation has been undertaken. Samples were prepared for the first time by hydrazine-assisted polyol method, and the powders were annealed at various temperatures in order to obtain the samples with different grain sizes. From the Rietveld refined XRD data, lattice parameters, the average crystallite size values, and r.m.s micro-strain values were computed. From the AFM and TEM studies, the average particle sizes were obtained and are found to be in the range 12–46 nm. XPS measurements clearly indicate that the chemical states as +2 for both Zn and Ni ions and are stable with varying annealing temperature. Further, using XPS and optical studies, the electronic structure of the materials was analyzed. A careful phase analysis of the Rietveld refined XRD data (at logarithmic scale) selected area electron diffraction patterns, FTIR, Raman, and XPS studies; it was concluded that all the samples are having hexagonal wurtzite structure without any detectable impurity phases. The optical band gap values are found to exhibit a clear blue shift. The influence of oxygen vacancies on the emission spectra was studied by Photo Luminescence measurement. The magnetization studies were undertaken by VSM, MFM, and FMR techniques and confirmed the presence of clear room temperature ferromagnetism without any magnetic clusters. The carrier concentration (n) values obtained from the thermo power studies are found to decrease with increasing annealing temperature and depend on the local defects which are critically influenced by the annealing temperature and crystallite size of the nanomaterials.

Keywords

Nanoparticles Optical band gap RT ferromagnetism Diluted magnetic Semiconductors Carrier concentration Synthesis 

Notes

Acknowledgments

The authors thank DRDO (ER & IPR), New Delhi, for providing financial assistance through a research project and also thank Materials Research Center, Indian Institute of Technology of Madras, Chennai for providing facilities TEM, Raman, and XPS studies.

References

  1. Banerjee S, Mandal M, Gayathri N, Sardar M (2007) Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl Phys Lett 91:18250. doi: 10.1063/1.2804081 Google Scholar
  2. Bhatt RN, Berciu M, Kennett MP, Wan X (2002) Diluted magnetic semiconductors in the low carrier density regime. J Supercond 15:71–83. doi: 10.1023/A:1014031327996 Google Scholar
  3. Cebulla R, Weridt R, Ellmer K (1998) Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties. J Appl Phys 83:1087. doi: 10.1063/1.366798 CrossRefGoogle Scholar
  4. Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Bai XD, Sun C, Huang FF, Wen LS (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158:134. doi: 10.1016/S0169-4332(99)00601-7 CrossRefGoogle Scholar
  5. Cheng ZX, Wang XL, Dou SX, Ozawa K, Kimura H, Fabrication MP (2007) Raman spectra and ferromagnetic properties of the transition metal doped ZnO nanocrystals. J Phys D 40:6518–6521. doi: 10.1088/0022-3727/40/21/008 CrossRefGoogle Scholar
  6. Cheng C, Guoyue X, Zhang H, Luo Y (2008) Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism. Mater Lett 62:1617–1620. doi: 10.1016/j.matlet.2007.09.035 CrossRefGoogle Scholar
  7. Chu D, Zeng Y-P, Jiang D (2007) Synthesis and growth mechanism of Cr-doped ZnO single crystalline nanowires. Solid State Commun 143:308–312. doi: 10.1016/j.ssc.2007.05.036 CrossRefGoogle Scholar
  8. Chung YM, Moon CS, Jung MJ, Han JG (2005) The low temperature synthesis of Al doped ZnO films on glass and polymer using magnetron co-sputtering: working pressure effect. Surf Coatings Technol 200:936–939. doi: 10.1016/j.surfcoat.2005.02.197 CrossRefGoogle Scholar
  9. Coey JMD, Chambers SA (2008) Theme article—oxide dilute magnetic semiconductors—fact or fiction. MRS Bull 33:1053–1058CrossRefGoogle Scholar
  10. Coey JMD, Wongsaprom K, Alaria J, Venkatesan M (2008) Charge-transfer ferromagnetism in oxide nanoparticles. J Phys D 41:134012-1–134012-6. doi: 10.1088/0022-3727/41/13/134012 CrossRefGoogle Scholar
  11. Cong CJ, Hong JH, Liu QY, Liao L, Zhang KL (2006) Synthesis, structure and ferromagnetic properties of Ni-doped ZnO nanoparticles. Solid State Commun 138:511–515. doi: 10.1016/j.ssc.2006.04.020 CrossRefGoogle Scholar
  12. Cutler M, Leavy JF, Fitzpatrick RL (1964) Electronic transport in semimetallic cerium sulfide. Phys Rev 133:A1143–A1152. doi: 10.1103/PhysRev.133.A1143 CrossRefGoogle Scholar
  13. El-Hilo M, Dakhel AA, Ali-Mohamed AY (2009) Room temperature ferromagnetism in nanocrystalline Ni-doped ZnO synthesized by co-precipitation. J Magn Magn Mater 321:2279–2283. doi: 10.1016/j.jmmm.2009.01.040 CrossRefGoogle Scholar
  14. Fujitsu S, Koumoto K, Yanagida H, Watanabe Y, Kawazoe H (1999) Change in the oxidation state of the adsorbed oxygen equilibrated at 25 °C on ZnO surface during room temperature annealing after rapid quenching. Jpn J Appl Phys 38:1534–1538. doi: 10.1143/JJAP.38.1534 CrossRefGoogle Scholar
  15. Garces NY, Giles NC, Halliburton LE, Cantwell G, Eason DB, Reynolds DC, Look DC (2002) Production of nitrogen acceptors in ZnO by thermal annealing. Appl Phys Lett 80:1334–1336. doi: 10.1063/1.1450041 CrossRefGoogle Scholar
  16. Gayen RN, Rajaram A, Bhar R, Pal AK (2010) Ni-doped vertically aligned zinc oxide nanorods prepared by hybrid wet chemical route. Thin Solid Films 518:1627–1636. doi: 10.1016/j.tsf.2009.11.067 CrossRefGoogle Scholar
  17. Ghosh CK, Malkhandi S, Mitra MK, Chattopadhyay KK (2008) Effect of Ni doping on the dielectric constant of ZnO and its frequency dependent exchange interaction. J Phys D 41:245113-1–245113-9. doi: 10.1088/0022-3727/41/24/245113 Google Scholar
  18. Han S, Zhang D, Zhou C (2006) Synthesis and electronic properties of ZnO/CoZnO core–shell nanowires. Appl Phys Lett 88:133109-1–133109-3. doi: 10.1063/1.2187435 Google Scholar
  19. He V Jr, Lao CS, Chen LJ, Davidovic D, Wang ZL (2005) Large-scale Ni-doped ZnO nanowire arrays and electrical and optical properties. J Am Chem Soc 127:16376–16377. doi: 10.1021/ja0559193 CrossRefGoogle Scholar
  20. Herzer G (1992) Nanocrystalline soft magnetic materials. J Magn Magn Mater 112:258–262. doi: 10.1016/0304-8853(92)91168-S CrossRefGoogle Scholar
  21. Iqbal J, Wang B, Liu X, Yu D, He B, Yu R (2009) Oxygen vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J Phys 11:063009-1–063009-14. doi: 10.1088/1367-2630/11/6/063009 CrossRefGoogle Scholar
  22. Islam MN, Gjpsj TB, Chopra KL, Acharya HN (1996) XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280:20–25. doi: 10.1016/0040-6090(95)08239-5 CrossRefGoogle Scholar
  23. Jeon YT, Moon JY, Lee GH, Park J, Chang Y (2006) Comparison of the magnetic properties of metastable hexagonal close-packed Ni nanoparticles with those of the stable face-centered cubic Ni nanoparticles. J Phys Chem B 110:1189–1191. doi: 10.1021/jp054608b Google Scholar
  24. Kamat PV, Dimitrijevic NM, Nozik AJ (1989) Dynamic Burstein–Moss shift in semiconductor colloids. J Phys Chem 93:2873–2875. doi: 10.1021/j100345a003 CrossRefGoogle Scholar
  25. Kong DH, Choi WC, Shin YC, Park JH, Kim TG (2006) Role of oxygen in green emission from ZnO thin films. J Korean Phys Soc 48:1214–1217Google Scholar
  26. Kuhrt C, Schultz L (1993) Magnetic properties of nanocrystalline mechanically alloyed Fe–Co and Fe–Ni. J Appl Phys 73:6588–6590. doi: 10.1063/1.352573 CrossRefGoogle Scholar
  27. Kwon YJ, Kim KH, Lim CS, Shim KB (2002) Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organo chemical route. J Ceram Proc Res 3:146–149Google Scholar
  28. Li BB, Xiu XQ, Zhang R, Tao ZK, Chen L, Xie ZL, Zheng YD, Xie Z (2006) Study of structure and magnetic properties of Ni-doped ZnO-based DMSs. Mater Sci Semicond Process 9:141–145. doi: 10.1016/j.mssp.2006.01.074 CrossRefGoogle Scholar
  29. Liu SH, Hsu HS, Lin CR, Lue CS, Huang JCA (2007) Effects of hydrogenated annealing on structural defects, conductivity, and magnetic properties of V-doped ZnO powders. Appl Phys Lett 90:222505-1–222505-3. doi: 10.1063/1.2745642 Google Scholar
  30. Liu SH, Huang JCA, Lin CR, Qi X (2009a) Electrical transport and ac conductivity properties of hydrogenated annealing V-doped ZnO. J Appl Phys 105:07C502-1–07C502-3. doi: 10.1063/1.3055274 Google Scholar
  31. Liu XF, Yu RH (2007) Mediation of room temperature ferromagnetism in Co-doped SnO2 nanocrystalline films by structural defects. J Appl Phys 102:083917-1–083917-5. doi: 10.1063/1.2801375 Google Scholar
  32. Liu XJ, Zhu XY, Song C, Zeng F, Pan F (2009b) Intrinsic and extrinsic origins of room temperature ferromagnetism in Ni-doped ZnO films. J Phys D 42:035004-1–035004-7. doi: 10.1088/0022-3727/42/3/035004 Google Scholar
  33. Lojkowski W, Gedanken A, Grzanka E, Opalinska A, Strachowski T, Pielaszek R, Tomaszewska-Grzeda A, Yatsunenko S, Godlewski M, Matysiak H, Kurzydłowski KJ (2009) Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+and Cr3+ions. J Nanopart Res 11:1991–2002. doi: 10.1007/s11051-008-9559-9 CrossRefGoogle Scholar
  34. Lutterotti L (2000) MAUD CPD, Newsletter (IUCr) 24Google Scholar
  35. Lutterotti L, Matthies S, Wenk H-R (1999) MAUD (Material Analysis Using Diffraction): a user friendly Java program for Rietveld Texture Analysis and more. Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM–12), vol 1, p 1599Google Scholar
  36. Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH (1999) Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J Appl Phys 85:2861-1–2861-5. doi: 10.1063/1.369049 CrossRefGoogle Scholar
  37. Maouche D, Ruterana P, Louail L (2007) Carrier-mediated ferromagnetism in N co-doped (Zn, Mn)O-based diluted magnetic semiconductors. Phys Lett A 365:231–234. doi: 10.1016/j.physleta.2007.01.014 CrossRefGoogle Scholar
  38. Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291:854–856. doi: 10.1126/science.1056186 CrossRefGoogle Scholar
  39. Moulder JF, Stickle WF, Sobol PE and Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie MN, ISBN 0962702625Google Scholar
  40. Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain JJ, King RC (eds) (1995) Handbook of X-ray photoelectron spectroscopy, physical electronics. Perkin-Elmer Corp, Eden Prarie, MNGoogle Scholar
  41. Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281:951–956. doi: 10.1126/science.281.5379.951 CrossRefGoogle Scholar
  42. Ohtomo A, Kawasaki M, Ohkubo I, Ohkubo I, Koinuma H, Yasuda T, Segawa Y (1999) Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Appl Phys Lett 75:980–982. doi: 10.1063/1.124573 CrossRefGoogle Scholar
  43. Park CH, Chadi DJ (2005) Hydrogen-mediated spin–spin interaction in ZnCoO. Phys Rev Lett 94:127204-1–127204-4. doi: 10.1103/PhysRevLett.94.127204 Google Scholar
  44. Pawelec B, Daza L, Fierro JLG, Anderson JA (1996) Regeneration of Ni–USY catalysts used in benzene hydrogenation. Appl Catal A 145:307–322. doi: 10.1016/0926-860X(96)00134-2 CrossRefGoogle Scholar
  45. Pei G, Xia C, Cao S, Zhang J, Wu F, Xu J (2006) Synthesis and magnetic properties of Ni-doped zinc oxide powders. J Magn Magn Mater 302:340–342. doi: 10.1016/j.jmmm.2005.09.029 CrossRefGoogle Scholar
  46. Pei GQ, Wu F, Xia C, Zhang JG, Li X, Xu J (2008) Influences of Al doping concentration on structural, electrical and optical properties of Zn0.95Ni0.05O powders. Curr Appl Phys 8:18–23. doi: 10.1016/j.cap.2007.04.003 CrossRefGoogle Scholar
  47. Punnoose A, Reddy KM, Hays J, Thurber A, Engelhard MH (2006) Magnetic gas sensing using a dilute magnetic semiconductor. Appl Phys Lett 89:112509-1–112509-3. doi: 10.1063/1.2349284 CrossRefGoogle Scholar
  48. Radovanovic PV, Gamelin DR (2003) High-temperature ferromagnetism in Ni2+-Doped ZnO aggregates prepared from colloidal diluted magnetic semiconductor quantum dots. Phys Rev Lett 91:1572021-1–1572021-4. doi: 10.1103/PhysRevLett.91.157202 CrossRefGoogle Scholar
  49. Raebiger H, Lany S, Zunger A (2008a) Charge self-regulation upon changing the oxidation state of transition metals in insulators. Nature (London) 453:763–766. doi: 10.1038/nature07009 CrossRefGoogle Scholar
  50. Raebiger H, Lany S, Zunger A (2008b) Control of ferromagnetism via electron doping in In2O3:Cr. Phys Rev Lett 101:027203-1–027203-4. doi: 10.1103/PhysRevLett.101.027203 CrossRefGoogle Scholar
  51. Sarma SD (2003) Ferromagnetic semiconductors: a giant appears in spintronics. Nat Mater 2:292–294. doi: 10.1038/nmat883 CrossRefGoogle Scholar
  52. Sato K, Yoshida HK (2001) Stabilization of ferromagnetic states by electron doping in Fe-, Co- or Ni-doped ZnO. Japan J Appl Phys 40:L334–L336. doi: 10.1143/JJAP.40.L334 CrossRefGoogle Scholar
  53. Schmidt G, Ferrand D, Molenkamp LW, van Wees BJ (2000) Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B 62:R4790–R4793. doi: 10.1103/PhysRevB.62.R4790 CrossRefGoogle Scholar
  54. Schwartz DA, Kittilstved KR, Gamelin DR (2004) Above-room-temperature ferromagnetic Ni2+-doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl Phys Lett 85:1395–1397. doi: 10.1063/1.1785872 CrossRefGoogle Scholar
  55. Selim MM, Islam H, El-Maksoud A (2005) Spectroscopic and catalytic characterization of Ni nano-size catalyst for edible oil hydrogenation. Microporous Mesoporous Mater 85:273–278. doi: 10.1016/j.micromeso.2005.06.027 CrossRefGoogle Scholar
  56. Serrano J, Romero AH, Manjón FJ, Lauck R, Cardona M, Rubio A (2004) Pressure dependence of the lattice dynamics of ZnO: an ab initio approach. Phys Rev B 69:094306-1–094306-14. doi: 10.1103/PhysRevB.69.094306 Google Scholar
  57. Shi H, Duan Y (2009) First-principles study of magnetic properties of 3d transition metals doped in ZnO nanowires. Nanoscale Res Lett 4:480–484. doi: 10.1007/s11671-009-9260-7 CrossRefGoogle Scholar
  58. Silva RF, Zaniquelli MED (2002) Morphology of nanometric size particulate aluminium-doped zinc oxide films. Colloids Surf A 198–200:551–558. doi: 10.1016/S0927-7757(01)00959-1 CrossRefGoogle Scholar
  59. Simpson JC, Cordero JF (1988) Characterization of deep levels in zinc oxide. J Appl Phys 63:1781–1783. doi: 10.1063/1.339919 CrossRefGoogle Scholar
  60. Stocker M, Tangstad E, Aasand N, Myrstad T (2000) Quantitative determination of Ni and V in FCC catalysts monitored by ESR spectroscopy. Catal Lett 69:223–229. doi: 10.1023/A:1019094611940 CrossRefGoogle Scholar
  61. Straumal BB, Mazilkin AA, Protasova SG, Myatiev AA, Straumal PB, Baretzky B (2008) Increase of Co solubility with decreasing grain size in ZnO. Acta Mater 56:6246–6256. doi: 10.1016/j.actamat.2008.08.032 CrossRefGoogle Scholar
  62. Straumal B, Baretzky B, Mazilkin A, Protasova S, Myatiev A, Straumal P (2009) Increase of Mn solubility with decreasing grain size in ZnO. J Eur Ceram Soc 29:1963–1970. doi: 10.1016/j.jeurceramsoc.2009.01.005 CrossRefGoogle Scholar
  63. Studenikin SA, Golego N, Cocivera M (1998) Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J Appl Phys 84:2287–2294. doi: 10.1063/1.368295 CrossRefGoogle Scholar
  64. Tau J (1974) Amorphous and liquid semiconductor. Plenum Press, New York, p 159Google Scholar
  65. Thota S, Dutta T, Kumar J (2006) On the sol–gel synthesis and thermal, structural, and magnetic studies of transition metal (Ni, Co, Mn) containing ZnO powders. J Phys Condens Matter 18:2473–2486. doi: 10.1088/0953-8984/18/8/012 CrossRefGoogle Scholar
  66. Tong L-N, He X-M, Han H-B, Hu J-L, Xia A-L, Tong Y (2010) Effects of annealing on ferromagnetism of Ni-doped ZnO powders. Solid State Commun 150:1112–1116. doi: 10.1016/j.ssc.2010.03.029 CrossRefGoogle Scholar
  67. Van de Walle CG (2000) Hydrogen as a cause of doping in zinc oxide. Phys Rev Lett 85:1012–1015. doi: 10.1103/PhysRevLett.85.1012 CrossRefGoogle Scholar
  68. Van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) Identification of the transition responsible for the visible emission in ZnO using quantum size effects. J Lumin 90:123–128. doi: 10.1016/S0022-2313(99)00599-2 CrossRefGoogle Scholar
  69. van Wees BJ (2000) Comment on observation of spin injection at a ferromagnet semiconductor interface. Phys Rev Lett 84:5023–5024. doi: 10.1103/PhysRevLett.84.5023 CrossRefGoogle Scholar
  70. Wang ZG, Zu XT, Zhu S, Wang LM (2006) Green luminescence originates from surface defects in ZnO nanoparticles. Physica E 35:199–202. doi: 10.1016/j.physe.2006.07.022 CrossRefGoogle Scholar
  71. Wang H, Chen Y, Wang HB, Zhang C, Yang FJ, Duan JX, Yang CP, Xu YM, Zhou MJ, Li Q (2007) High resolution transmission electron microscopy and Raman scattering studies of room temperature ferromagnetic Ni-doped ZnO nanocrystals. Appl Phys Lett 90:052505-1–052505-3. doi: 10.1063/1.2435606 Google Scholar
  72. Wolff PA, Bhatt RN, Durst AC (1996) Polaron–polaron interactions in diluted magnetic semiconductors. J Appl Phys 79:5196-1–5196-3. doi: 10.1063/1.361338 CrossRefGoogle Scholar
  73. Xu Q, Hartmann L, Zhou S, Mcklich A, Potzger K, Helm M, Biehne G, Hochmuth H, Lorenz M, Grundmann M, Schmidt H (2008) Spin manipulation in Co-doped ZnO. Phys Rev Lett 101:0766011–0766014. doi: 10.1103/PhysRevLett.101.076601 Google Scholar
  74. Yin ZG, Chen NF, Yang F, Song SL, Chai CL, Zhong J, Qian HJ, Ibrahim K (2005) Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun 135:430–433. doi: 10.1016/j.ssc.2005.05.024 CrossRefGoogle Scholar
  75. Yu GH, Zeng LR, Zhu FW, Chai CL, Lai WY (2001) Magnetic properties and X-ray photoelectron spectroscopy study of NiO/NiFe films prepared by magnetron sputtering. J Appl Phys 90:40391–40395. doi: 10.1063/1.1401804 Google Scholar
  76. Yu GH, Zhu FW, Chai CL (2003) X-ray photoelectron spectroscopy study of magnetic films. Appl Phys A 76:45–47. doi: 10.1007/s003390201292 CrossRefGoogle Scholar
  77. Yuvaraj D, Narasimha Rao K (2010) Photo catalytic activity of ZnO nanostructured film grown by activated reactive evaporation. Mater Res Soc Symp Proc 1217:1217-Y03050. doi: 10.1557/PROC-1217Y03-50 Google Scholar
  78. Zhang XL, Qiao R, Li Y, Qiu R, Kang YS (2007) Synthesis and characterization of nickel-doped ZnO nanocrystals. Mater Res Soc Symp Proc 957: 0957-k10-24Google Scholar
  79. Zhou X, Ge S, Yao D, Yalu Z, Yuhua X (2008) Preparation, magnetic and optical properties of ZnO and ZnO:Co rods prepared by wet chemical method. J Alloy Compd 463:L9–L11. doi: 10.1016/j.jallcom.2007.11.099 CrossRefGoogle Scholar
  80. Zuo Y, Ge S, Chen Z, Zhang L, Zhou X, Yan S (2009) Morphology, optical and magnetic properties of Zn1−xNixO nanorod arrays fabricated by hydrothermal method. J Alloy Compd 470:47–50. doi: 10.1016/j.jallcom.2008.03.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • K. Srinivas
    • 1
  • S. Manjunath Rao
    • 2
  • P. Venugopal Reddy
    • 1
    Email author
  1. 1.Department of PhysicsOsmania UniversityHyderabadIndia
  2. 2.Central Instruments LaboratoryUniversity of HyderabadHyderabadIndia

Personalised recommendations