Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 499–510 | Cite as

Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells

  • Li Peng Qian
  • Li Han Zhou
  • Heng-Phon Too
  • Gan-Moog Chow
Research Paper


Gold decorated NaYF4:Yb,Er/NaYF4/silica (core/shell/shell) upconversion (UC) nanoparticles (~70–80 nm) were synthesized using tetraethyl orthosilicate and chloroauric acid in a one-step reverse microemulsion method. Gold nanoparticles (~6 nm) were deposited on the surface of silica shell of these core/shell/shell nanoparticles. The total upconversion emission intensity (green, red, and blue) of the core/shell/shell nanoparticles decreased by ~31% after Au was deposited on the surface of silica shell. The upconverted green light was coupled with the surface plasmon of Au leading to rapid heat conversion. These UC/silica/Au nanoparticles were very efficient to destroy BE(2)-C cancer cells and showed strong potential in photothermal therapy.


Upconversion Gold Photothermal therapy Nanocomposites Nanomedicine 



L. P. Qian is grateful to the research scholarships of the National University of Singapore. G. M. Chow acknowledges the Office of Naval Research, USA, for partial support of this work.


  1. Darbandi M, Thomann R, Nann T (2005) Single quantum dots in silica spheres by microemulsion synthesis. Chem Mater 17(23):5720–5725CrossRefGoogle Scholar
  2. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89(20):203002–203005CrossRefGoogle Scholar
  3. Feijo JA, Moreno N (2004) Imaging plant cells by two-photon excitation. Protoplasma 223(1):1–32CrossRefGoogle Scholar
  4. Feng W, Sun LD, Yan CH (2009) Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method. Chem Commun (29):4393–4395Google Scholar
  5. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554CrossRefGoogle Scholar
  6. Hu H, Xiong LQ, Zhou J, Li FY, Cao TY, Huang CH (2009) Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chem-Eur J 15(14):3577–3584CrossRefGoogle Scholar
  7. Idris NM, Li ZQ, Ye L, Sim EKW, Mahendran R, Ho PCL, Zhang Y (2009) Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30(28):5104–5113CrossRefGoogle Scholar
  8. Kim JH, Bryan WW, Lee TR (2008) Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Langmuir 24(19):11147–11152CrossRefGoogle Scholar
  9. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298(1):1–24CrossRefGoogle Scholar
  10. Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM, Tang SH (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326CrossRefGoogle Scholar
  11. Nam J, Won N, Jin H, Chung H, Kim S (2009) Ph-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645CrossRefGoogle Scholar
  12. Nikfarjam M, Muralidharan V, Christophi C (2005) Mechanisms of focal heat destruction of liver tumors. J Surg Res 127(2):208–223CrossRefGoogle Scholar
  13. Park K, Liang G, Ji XJ, Luo ZP, Li C, Croft MC, Markert JT (2007) Structural and magnetic properties of gold and silica doubly coated gamma-Fe2O3 nanoparticles. J Phys Chem C 111(50):18512–18519CrossRefGoogle Scholar
  14. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv Funct Mater 19(10):1553–1566CrossRefGoogle Scholar
  15. Qian LP, Yuan D, Yi GS, Chow GM (2009) Critical shell thickness and emission enhancement of NaYF4:Yb, Er/NaYF4/silica core/shell/shell nanoparticles. J Mater Res 24:3559–3568CrossRefGoogle Scholar
  16. Salgueirino-Maceira V, Correa-Duarte MA, Farle M, Lopez-Quintela A, Sieradzki K, Diaz R (2006) Bifunctional gold-coated magnetic silica spheres. Chem Mater 18(11):2701–2706CrossRefGoogle Scholar
  17. Schietinger S, Aichele T, Wang HQ, Nann T, Benson O (2010) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10(1):134–138CrossRefGoogle Scholar
  18. Schroedter A, Weller H (2002) Ligand design and bioconjugation of colloidal gold nanoparticles. Angew Chem Int Ed 41(17):3218–3221CrossRefGoogle Scholar
  19. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21(23):10644–10654CrossRefGoogle Scholar
  20. Stern JM, Stanfield J, Kabbani W, Hsieh J-T, Cadeddu JA (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179(2):748–753CrossRefGoogle Scholar
  21. Turner NH, Single AM (1990) Determination of peak positions and areas from wide-scan xps spectra. Surf Inter Anal 15(3):215–222CrossRefGoogle Scholar
  22. Wagner LM, Danks MK (2009) New therapeutic targets for the treatment of high-risk neuroblastoma. J Cell Biochem 107(1):46–57CrossRefGoogle Scholar
  23. Wang Y, Tu LP, Zhao JW, Sun YJ, Kong XG, Zhang H (2009) Upconversion luminescence of beta- NaYF4: Yb3+, Er3+@beta- NaYF4 core/shell nanoparticles: excitation power, density and surface dependence. J Phys Chem C 113(17):7164–7169CrossRefGoogle Scholar
  24. Wiersinga WJ, Jansen MC, Straatsburg IH, Davids PH, Klaase JM, Gouma DJ, TMv Gulik (2003) Lesion progression with time and the effect of vascular occlusion following radiofrequency ablation of the liver. Br J Surg 90(3):306–312CrossRefGoogle Scholar
  25. Xiong LQ, Chen ZG, Yu MX, Li FY, Liu C, Huang CH (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30(29):5592–5600CrossRefGoogle Scholar
  26. Yi GS, Chow GM (2007) Water-soluble NaYF4: Yb, Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341–343CrossRefGoogle Scholar
  27. Yong KT, Roy I, Swihart MT, Prasad PN (2009) Multifunctional nanoparticles as biocompatible targeted probes for human cancer diagnosis and therapy. J Mater Chem 19(27):4655–4672CrossRefGoogle Scholar
  28. Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y, Duan XF (2010) Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed 49(16):2865–2868Google Scholar
  29. Zijlmans H, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, Tanke HJ (1999) Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 267(1):30–36CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Li Peng Qian
    • 1
  • Li Han Zhou
    • 2
    • 3
  • Heng-Phon Too
    • 2
    • 3
  • Gan-Moog Chow
    • 1
  1. 1.Department of Materials Science and EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Department of BiochemistryNational University of SingaporeSingaporeRepublic of Singapore
  3. 3.Chemical Pharmaceutical EngineeringSingapore–Massachusetts Institute of Technology AllianceSingaporeRepublic of Singapore

Personalised recommendations