Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 783–790 | Cite as

Characterization of crystalline silica nanorods synthesized via a solvothermal route using polyvinylbutyral as a template

  • Lin-Jer Chen
  • Jiunn-Der Liao
  • Yu-Ju Chuang
  • Yaw-Shyan Fu
Research Paper

Abstract

The preparation of crystalline silica nanorods is presented. Crystalline silica nanorods were synthesized via a simple solvothermal route using polyvinylbutyral (PVB) as a template in an autoclave with ethylenediamine as a solvent at 180 °C for 25 h. Silica nanorods with diameters in the range of 50–80 nm were obtained. The solvothermal route with a PVB template played affected the crystallization process and the growth of the silica nanorods. The as-synthesized products were characterized using X-ray diffraction, energy dispersive spectrometry, scanning electron microscopy, and transmission electron microscopy.

Keywords

Solvothermal Silica Polyvinylbutyral Ethylenediamine Nanostructures 

Notes

Acknowledgment

This study has been supported in part by National Science Council of Taiwan (project number: NSC 97-2113-M-024-002-MY2).

References

  1. Chao CH, Lu HY (2002) Stress-induced β→α-cristobalite phase transformation in (Na2O + Al2O3)-codoped silica. Mater Sci Eng A 328:267–276CrossRefGoogle Scholar
  2. Chen LJ, Liao JD, Lin SJ, Chuang YJ, Fu YS (2009) Synthesis and characterization of PVB/silica nanofibers by electrospinning process. Polymer 50:3516–3521CrossRefGoogle Scholar
  3. Drees LR, Wilding LP, Smeck NE, Senkayi AL (1995) Silica in soils: quartz and disordered silica polymorphs. In: Dixon JB, Weed SB (eds) Minerals in soil environments, vol 1. SSSA Book Series. Madison, pp 913–975Google Scholar
  4. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245CrossRefGoogle Scholar
  5. Feller RL, Curran M, Colaluca V, Bogaard J, Bailie C (2007) Photochemical deterioration of poly(vinylbutyral) in the range of wavelengths from middle ultraviolet to the visible. Polym Degrad Stab 92:920–931CrossRefGoogle Scholar
  6. Gao P, Wang ZL (2002) Self-assembled nanowire–nanoribbon junction arrays of ZnO. J Phys Chem B 106:12653–12658CrossRefGoogle Scholar
  7. Harkless JAW, Stillinger DK, Stillinger FH (1996) Structures and energies of SiO2 clusters. J Phys Chem 100:1098–1103CrossRefGoogle Scholar
  8. Hartmann M, Hierarchical Z (2004) A proven strategy to combine shape selectivity with efficient mass transport. Angew Chem Int Ed 43:5880–5882CrossRefGoogle Scholar
  9. Ilic B, Craighead HG, Krylov S, Senaratne W, Ober C, Neuzil P (2004) Attogram detection using nanoelectromechanical oscillators. J Appl Phys 95:3694–3703CrossRefGoogle Scholar
  10. Innocenzi P, Martucci A, Guglielmi M, Bearzotti A, Traversa E, Pivin JC (2001) Mesoporous silica thin films for alcohol sensors. J Eur Ceram Soc 21:1985–1988CrossRefGoogle Scholar
  11. Kameoka J, Scott SV, Haiqing L, Czaplewski DA, Craighead HG (2004) Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source. Nano Lett 4:2105–2108CrossRefGoogle Scholar
  12. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83:1216–1218CrossRefGoogle Scholar
  13. Lao JY, Wen JG, Ren ZF (2002) Hierarchical ZnO nanostructures. Nano Lett 2:1287–1291CrossRefGoogle Scholar
  14. Lee JS, Choi SC (2004) Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH. Mater Lett 58:390–393CrossRefGoogle Scholar
  15. Lee JS, Choi SC (2005) Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process. J Eur Ceram Soc 25:3307–3314CrossRefGoogle Scholar
  16. Li YD, Liao HW, Ding Y, Qian YT, Yang L, Zhou GE (1998) Nonaqueous synthesis of CdS nanorod semiconductor. Chem Mater 10:2301–2303CrossRefGoogle Scholar
  17. Li D, Wang Y, Xia Y (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16:361–366CrossRefGoogle Scholar
  18. Li X, Wu Y, Li Y (2007) Surfactant-assisted synthesis of helical silica. Inorg Chem Acta 360:241–245CrossRefGoogle Scholar
  19. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4:671–675CrossRefGoogle Scholar
  20. Matijevi E (1993) Preparation and properties of uniform size colloids. Chem Mater 5:412–426CrossRefGoogle Scholar
  21. Mitchell BD (1975) Oxides and hydrous oxides of silicon. In: Gieseking JE (ed) Soil components, vol 2. Springer-Verlag, New York, pp 395–432Google Scholar
  22. Nagano T, Fujisaki S, Sato K, Hataya K, Iwamoto Y, Nomura M, Nakao SI (2008) Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous silica membrane synthesized by counter diffusion chemical vapor deposition. J Am Ceram Soc 91:71–76Google Scholar
  23. Ogihara H, Masahiro SM, Nodasaka Y, Ueda W (2006a) Shape-controlled synthesis of ZrO2, Al2O3, and SiO2 nanotubes using carbon nanofibers as templates. Chem Mater 18:4981–4983CrossRefGoogle Scholar
  24. Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K (2006b) Synthesis of SiO2 nanotubes and their application as nanoscale reactors. Chem Mater 18:996–1000CrossRefGoogle Scholar
  25. Peng Z, Kong LX, Li SD, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: its preparation and characterization. Compos Sci Technol 67:3130–3139CrossRefGoogle Scholar
  26. Piticescu RR, Monty C, Taloi D, Motoc A, Axinte S (2001) Hydrothermal synthesis of zirconia nanomaterials. J Eur Ceram Soc 21:2057–2060CrossRefGoogle Scholar
  27. Ruenraroengsak P, Florence AT (2005) The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels. Int J Pharm 298:361–366CrossRefGoogle Scholar
  28. Sigma MB, Korgel BA (2005) Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric. Chem Mater 17:1655–1660CrossRefGoogle Scholar
  29. Tang KB, Qian YT, Zeng JH, Yang XG (2003) Solvothermal route to semiconductor nanowires. Adv Mater 15:448–450CrossRefGoogle Scholar
  30. Wagner RS, Elhs WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90CrossRefGoogle Scholar
  31. Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298CrossRefGoogle Scholar
  32. Wang W, Poudel B, Yang J, Wang DZ, Ren ZF (2005) High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. J Am Chem Soc 127:13792–13793CrossRefGoogle Scholar
  33. Yang PD, Lieber CM (1996) Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273:1836–1840CrossRefGoogle Scholar
  34. Yang YX, Qu XP, Chen YR, Jia XC, Zhang JB, Liu XN (2007) Effect of counterions on synthesis of mesoporous silica by the route of template. J Am Chem Soc 90:2050–2056Google Scholar
  35. Yazawa M, Koguchi M, Hiruma K (1993) Semiconductor nanowhiskers. Adv Mater 5:577–580CrossRefGoogle Scholar
  36. Yoshimoto Y, Shin YM, Rerai H, Cacanti JP, Jin HJ (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082CrossRefGoogle Scholar
  37. You Y, Min BM, Lee JS, Lee TS, Park WH (2005) In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J Appl Polym Sci 95:193–200CrossRefGoogle Scholar
  38. Yu SH (2001) Hydrothermal/solvothermal processing of advanced ceramic materials. J Ceram Soc Jpn 109:S65–S75Google Scholar
  39. Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Control of ZnO morphology via a simple solution route. Chem Mater 14:4172–4177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Lin-Jer Chen
    • 1
  • Jiunn-Der Liao
    • 1
  • Yu-Ju Chuang
    • 1
  • Yaw-Shyan Fu
    • 2
  1. 1.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of GreenergyNational University of TainanTainanTaiwan

Personalised recommendations