Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 733–737 | Cite as

Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading

  • Mohammad A. Rafiee
  • Fazel Yavari
  • Javad Rafiee
  • Nikhil KoratkarEmail author
Research Paper


In this study, we characterized the mechanical properties of fullerence (C60) epoxy nanocomposites at various weight fractions of fullerene additives in the epoxy matrix. The mechanical properties measured were the Young’s modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack propagation. All of the above properties of the epoxy polymer were significantly enhanced by the fullerene additives at relatively low nanofiller loading fractions (~0.1 to 1% of the epoxy matrix weight). By contrast, other forms of nanoparticle fillers such as silica, alumina, and titania nanoparticles require up to an order of magnitude higher weight fraction to achieve comparable enhancement in properties.


Epoxy nanocomposites Fullerenes Young’s modulus Tensile strength Fracture toughness Fracture energy and fatigue resistance 



N.K. acknowledges funding support from the US Office of Naval Research (Award Number: N000140910928) and the US National Science Foundation (Award Number: 0900188).


  1. Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44:6013–6032CrossRefGoogle Scholar
  2. Bakis CE, Bank LC, Brown VL, Cosenza E, Davalos JF, Lesko JJ, Machida A, Rizkalla SH, Triantafillou TC (2002) Fiber-reinforced polymer composites for construction—state-of-the-art review. J Compos Constr 6:73–87CrossRefGoogle Scholar
  3. Blackman BRK, Kinloch AJ, Lee JS, Taylor AC, Agarwal R, Schueneman G, Sprenger S (2007) The fracture and fatigue behaviour of nano-modified epoxy polymers. J Mater Sci 42:7049–7051CrossRefGoogle Scholar
  4. Gojny FH, Wichmann MHG, Fiedler BK, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Comp Sci Technol 65:2300–2313CrossRefGoogle Scholar
  5. Kinloch AJ, Shaw SJ, Hunston DL (1983) Deformation and fracture behaviour of a rubber-toughened epoxy: 2. Failure criteria. Polymer 24:1355–1363CrossRefGoogle Scholar
  6. Kunz SC, Beaumont PWR (1981) Low-temperature behaviour of epoxy-rubber particulate composites. J Mater Sci 16:3141–3152CrossRefGoogle Scholar
  7. Kusaka T, Hojo M, Mai YW, Kurokawa T, Nojima T, Ochiai S (1998) Rate dependence of mode I fracture behaviour in carbon-fibre/epoxy composite laminates. Compos Sci Technol 58:591–602CrossRefGoogle Scholar
  8. Liu W, Hoa SV, Pugh M (2005) Fracture toughness and water uptake of high-performance epoxy/nanoclay nanocomposites. Compos Sci Technol 65:2364–2373CrossRefGoogle Scholar
  9. Ma C, Ji LJ, Zhang RP, Zhu YF, Zhang W, Koratkar N (2008) Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46:706–710CrossRefGoogle Scholar
  10. Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos A 30:1445–1461CrossRefGoogle Scholar
  11. Pearson RA, Yee AF (1989) Toughening mechanisms in elastomer-modified epoxies. Part 3: the effect of cross-link density. J Mater Sci 24:2571–2580CrossRefGoogle Scholar
  12. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009a) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRefGoogle Scholar
  13. Rafiee MA, Rafiee J, Yu ZZ, Koratkar N (2009b) Buckling resistant graphene nanocomposites. Appl Phys Lett 95:223103CrossRefGoogle Scholar
  14. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2010a) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRefGoogle Scholar
  15. Rafiee MA, Rafiee J, Yu ZZ, Koratkar N (2010b) Superhydrophobic to superhydrophilic wetting control in graphene films. Adv Mater 22:2151–2154CrossRefGoogle Scholar
  16. Schutte CL (1994) Environmental durability of glass-fiber composites. Mater Sci Eng Rep 13:265–324CrossRefGoogle Scholar
  17. Wang K, Chen L, Wu J, Toh ML, He C, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800CrossRefGoogle Scholar
  18. Wetzel B, Rosso P, Haupert F, Friedrich K (2006) Epoxy nanocomposites—fracture and toughening mechanisms. Eng Fract Mech 73:2375–2398CrossRefGoogle Scholar
  19. Zerda AS, Lesser AJ (2001) Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior. J Polym Sci 39:1137–1146Google Scholar
  20. Zhang W, Picu RC, Koratkar N (2007) Suppression of fatigue crack growth in carbon nanotube composites. Appl Phys Lett 91:193109CrossRefGoogle Scholar
  21. Zhang W, Srivastava I, Zhu YF, Picu RC, Koratkar N (2009) Heterogeneity in epoxy nanocomposites initiates crazing: Significant improvements in fatigue resistance and toughening. Small 5:1403–1407CrossRefGoogle Scholar
  22. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mohammad A. Rafiee
    • 1
  • Fazel Yavari
    • 1
  • Javad Rafiee
    • 1
  • Nikhil Koratkar
    • 1
    Email author
  1. 1.Department of Mechanical, Aerospace and Nuclear EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations