Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 693–702 | Cite as

Octaarginine-modified chitosan as a nonviral gene delivery vector: properties and in vitro transfection efficiency

  • Xiaoli Zhao
  • Zhaoyang Li
  • Wenguang Liu
  • Wingmoon Lam
  • Peng Sun
  • Richard Y. T. Kao
  • Keith D. K. Luk
  • William W. LuEmail author
Research Paper


Protein transduction domains (PTD) have been identified to have the capacity to facilitate molecular cargo to translocate through cell membrane. This study aims to utilize the cell membrane penetrating ability of octaarginine oligopeptide, a simplified prototype of the PTD, to enhance the transfection efficiency of chitosan. Octaarginine-modified chitosan (R8-CS) was synthesized as a gene transfer carrier by carbodiimide chemistry. The structure and composition of R8-CSs were characterized using FTIR and 1H NMR. Agarose gel electrophoresis assay showed that R8-CS could efficiently condense the DNA. The particle size of R8-CS/DNA complexes were determined to be around 100–200 nm. The nanoparticle complexes exhibited a spherical and compact morphology. R8-CS demonstrated higher transfection activity and lower cytotoxicity as compared to the unmodified chitosan and also showed good serum resistance.


Gene delivery Chitosan Octaarginine Nanomedicine 



This project was partially supported by Hong Kong RGC (HKU7147/07E) and Hong Kong Innovation Technology Commission ITF-GHP 009-06. The authors also acknowledge the support from HKU Seed Funding Programme (200811159133).


  1. Barreira SVP, Silva F (2003) Surface modification chemistry based on the electrostatic adsorption of poly-L-arginine onto alkanethiol modified gold surfaces. Langmuir 19:10324–10331CrossRefGoogle Scholar
  2. Braiman MS, Briercheck DM, Kriger KM (1999) Modeling vibration spectra of amino acid side chains in proteins: Effects of protonation state, counterion, and solvent on arginine C–N stretch frequencies. J Phys Chem B 103:4744–4750CrossRefGoogle Scholar
  3. Brooks H, Lebleu B, Vivès E (2005) Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 57:559–577CrossRefGoogle Scholar
  4. Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS (2004) Enhanced transfection efficiency of PAMAM dendrimer by surface modification with l-arginine. J Control Release 99:445–456CrossRefGoogle Scholar
  5. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276(8):5836–5840CrossRefGoogle Scholar
  6. Gao Y, Xu Z, Chen S, Gu W, Chen L, Li Y (2008) Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: in vitro characteristics and transfection efficiency. Int J Pharm 359:241–246CrossRefGoogle Scholar
  7. Glover DJ, Lipps HJ, Jans DA (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6:299–310CrossRefGoogle Scholar
  8. Goldman CK, Soroceanu L, Smith N, Gillespie GY, Shaw W, Burgess S, Bilbao G, Curiel DT (1997) In vitro and in vivo gene delivery mediated by a synthetic polycationic amino polymer. Nat Biotechnol 15:462–466CrossRefGoogle Scholar
  9. Jean M, Smaoui F, Lavertu M, Methot S, Bouhdoud L, Buschmann M, Merzouki A (2009) Chitosan–plasmid nanoparticle formulations for IM and SC delivery of recombinant FGF-2 and PDGF-BB or generation of antibodies. Gene Ther 16:1097–1110CrossRefGoogle Scholar
  10. Jiang HL, Kwon JT, Kim YK, Kim EM, Arote R, Jeong HJ, Nah JW, Choi YJ, Akaike T, Cho MH, Cho CS (2007) Galactosylated chitosan-graft-polyethylenimine as gene carrier for hepatocyte targeting. Gene Ther 14:1389–1398CrossRefGoogle Scholar
  11. Khali IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M, Kishida H, Kudoh M, Mishina Y, Kataoka K, Yamada M, Harashima H (2004) Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther 14:682–689CrossRefGoogle Scholar
  12. Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, Choi YJ, Akaike T, Cho CS (2007a) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32:726–753CrossRefGoogle Scholar
  13. Kim TI, Baek JU, Bai CZ, Park JS (2007b) Arginine-conjugated polypropylenimine dendrimer as a non-toxic and efficient gene delivery carrier. Biomaterials 28:2061–2067CrossRefGoogle Scholar
  14. Kim TI, Ou M, Lee M, Kim SW (2009) Arginine-grafted bioreducible poly(disulfide amine) for gene delivery systems. Biomaterials 30:658–664CrossRefGoogle Scholar
  15. Köping-Höggård M, Vårum KM, Issa M, Danielsen S, Christensen BE, Stokke B, Artursson P (2004) Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Ther 11:1441–1452CrossRefGoogle Scholar
  16. Kunath K, Harpe AV, Fischer D, Petersen H, Bickel U, Voigt K, Kissel T (2003) Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release 89:113–125CrossRefGoogle Scholar
  17. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34CrossRefGoogle Scholar
  18. Li YT, Kwon YM, Spangrude GJ, Liang JF, Chung HS, Park YJ, Yang VC (2009) Preliminary in vivo evaluation of the protein transduction domain-modified ATTEMPTS approach in enhancing asparaginase therapy. J Biomed Mater Res 91A:209–220CrossRefGoogle Scholar
  19. Liji SSS, Sundaraseelan J, Sekar S, Sastry TP, Mandal AB (2009) Gelatin–chitosan composite capped gold nanoparticles: a matrix for the growth of hydroxyapatite. J Nanopart Res 11:333–340CrossRefGoogle Scholar
  20. Liu Y, Reineke TM (2005) Hydroxyl stereochemistry and amine number within poly(glycoamidoamine)s, affect intracellular DNA delivery. J Am Chem Soc 127(9):3004–3015CrossRefGoogle Scholar
  21. Liu WG, Zhang JR, Cao ZQ, Xu FY, Yao KD (2004) A chitosan–arginine conjugate as a novel anticoagulation biomaterial. J Mater Sci Mater Med 15:1199–1203CrossRefGoogle Scholar
  22. Lou YL, Peng YS, Chen BH, Wang LF, Leong KW (2009) Poly(ethylene imine)-g-chitosan using EX-810 as a spacer for nonviral gene delivery vectors. J Biomed Mater Res A 88:1058–1068Google Scholar
  23. Lu B, Xu XD, Zhang XZ, Cheng SX, Zhuo RX (2008) Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Macromolecules 9(10):2594–2600Google Scholar
  24. Morpurgo M, Radu A, Bayer EA, Wilchek M (2004) DNA condensation by high-affinity interaction with avidin. J Mol Recognit 17:558–566CrossRefGoogle Scholar
  25. Okuda T, Sugiyama A, Niidome T, Aoyagi H (2004) Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials 25:537–544CrossRefGoogle Scholar
  26. Onda M, Yoshihara K, Koyano H, Ariga K, Kunitake T (1996) Molecular recognition of nucleotides by the guanidinium unit at the surface of aqueous micelles and bilayers. A comparison of microscopic and macroscopic interfaces. J Am Chem Soc 118:8524–8530CrossRefGoogle Scholar
  27. Paulino AT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr Polym 64:98–103CrossRefGoogle Scholar
  28. Pujals S, Fernández CJ, López IC, Kogan MJ, Giralt E (2006) Mechanistic aspects of CPP-mediated intracellular drug delivery: relevance of CPP self-assembly. Biochim Biophys Acta 1758:264–279CrossRefGoogle Scholar
  29. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides: a reevaluation of the mechanism of cellular uptake. J Biol Chem 278(1):585–590CrossRefGoogle Scholar
  30. Roeder GE, Parish JL, Stern PL, Gaston K (2004) Herpes simplex virus VP22-human papillomavirus E2 fusion proteins produced in mammalian or bacterial cells enter mammalian cells and induce apoptotoc cell death. Biotechnol Appl Biochem 40:157–165CrossRefGoogle Scholar
  31. Sakai N, Matile S (2003) Anion-mediated transfer of polyarginine across liquid and bilayer membranes. J Am Chem Soc 125:14348–14356CrossRefGoogle Scholar
  32. Sato T, Ishii T, Okahata Y (2001) In vitro gene delivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22:2075–2080CrossRefGoogle Scholar
  33. Shanta RB, Remant BKC, Santosh A, Narayan B, Sun YK, Ho KY, Pyoung HH, Hak YK (2008) Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. J Nanopart Res 10:151–162CrossRefGoogle Scholar
  34. Shokolenko IN, Alexeyev MF, LeDoux SP, Wilson GL (2005) TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair 4:511–518CrossRefGoogle Scholar
  35. Theodossiou TA, Pantos A, Tsogas I, Paleos CM (2008) Guanidinylated dendritic molecular transporters: prospective drug delivery systems and application in cell transfection. Chem Med Chem 3:1635–1643Google Scholar
  36. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358CrossRefGoogle Scholar
  37. Wender PA, Mitchell DJ, Pattairaman K, Pelkey ET, Steinman L, Rothbard JB (2000) The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci 97:13003–13008CrossRefGoogle Scholar
  38. Yamanouchi D, Wu J, Lazar AN, Kent KC, Chu CC, Liu B (2008) Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials 29:237–243CrossRefGoogle Scholar
  39. Yu JH, Huang J, Jiang HL, Quan JS, Cho MH, Cho CS (2009) Guanidinylated poly(allyl amine) as a gene carrier. J Appl Polym Sci 112:926–933CrossRefGoogle Scholar
  40. Zhang B, Ji W, Liu W, Yao K (2007) Guanidinylated allylamine-N-isopropylacrylamide copolymer non-viral transgene vectors. Int J Pharm 331:116–122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xiaoli Zhao
    • 1
  • Zhaoyang Li
    • 1
  • Wenguang Liu
    • 2
  • Wingmoon Lam
    • 1
  • Peng Sun
    • 2
  • Richard Y. T. Kao
    • 3
  • Keith D. K. Luk
    • 1
  • William W. Lu
    • 1
    Email author
  1. 1.Department of Orthopaedic and TraumatologyThe University of Hong KongHong KongPeople’s Republic of China
  2. 2.School of Polymer Material Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Department of MicrobiologyThe University of Hong KongHong KongPeople’s Republic of China

Personalised recommendations