Journal of Nanoparticle Research

, Volume 13, Issue 2, pp 683–691 | Cite as

Bent silica nanosheets directed from crystalline templates controlled by proton donors

  • Hiroyuki Matsukizono
  • Ren-Hua Jin
Research Paper


Linear poly(ethyleneimine) (LPEI) is easily crystallizable with the formation of various morphologies in the aqueous medium when its hot solution cooled down to room temperature. Herein, we prepared a series of crystalline precipitates of LPEI grown in the presence of proton donating compounds such as Tris–HCl, tartaric acid, amino acids, and used the precipitates in directing silica deposition. Since the proton donating compounds can mediate the pH with donating the proton to LPEI, the crystallization of LPEI evidently depended on the concentrations of the proton donating compounds. It was found that the precipitates grown in the conditions of the pH ranged 8.2–8.5 directed well-controlled bent nanosheet of silica/LPEI composites. The bent nanosheet is constructed by multi-layered structures with a little slippage between layers. The bent nanosheet silica has slit-like pore with ca. 10 nm width.


Linear polyethyleneimine Crystalline polymers Nanostructured silica Silica nanosheet Biomimetic silicification 



This research was partly supported by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation (JST).

Supplementary material

11051_2010_65_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1922 kb)


  1. Brott LL, Naik RR, Pikas DJ, Kirkpatrick SM, Tomlin DW, Whitlock PW, Clarson SJ, Stone MO (2001) Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature 413:291–293. doi: 10.1038/35095031 CrossRefGoogle Scholar
  2. Cha JN, Katsuhiko K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365CrossRefGoogle Scholar
  3. Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403:289–292. doi: 10.1038/35002038 CrossRefGoogle Scholar
  4. Delclos T, Aimé C, Pouget E, Brizard A, Huc I, Delville MH, Oda R (2008) Individualized silica nanohelices and nanotubes: tuning inorganic nanostructures using lipidic self-assemblies. Nano Lett 8:1929–1935. doi: 10.1021/nl080664n CrossRefGoogle Scholar
  5. Fowler CE, Khushalani D, Mann S (2001) Interfacial synthesis of hollow microspheres of mesostructured silica. Chem Commun 2028–2029. doi: 10.1039/b104879c
  6. Holmström SC, King PJS, Ryadnov MG, Butler MF, Mann S, Woolfson DN (2008) Templating silica nanostructures on rationally designed self-assembled peptide fibers. Langmuir 24:11778–11783. doi: 10.1021/la802009t CrossRefGoogle Scholar
  7. Jin R-H, Yuan J-J (2005) Synthesis of poly(ethyleneimine)s–silica hybrid particles with complex shapes and hierarchical structures. Chem Commun 1399–1401. doi: 10.1039/b417351a
  8. Jin R-H, Yuan J-J (2006) Shaped silicas transcribed from aggregates of four-armed star polyethyleneimine with a benzene core. Chem Mater 18:3390–3396. doi: 10.1021/cm060533s CrossRefGoogle Scholar
  9. Jin R-H, Yuan J-J (2007a) Hierarchically structured silica from mediation of linear poly(ethyleneimine) incorporated with acidic/basic additives. Polym J 39:464–470CrossRefGoogle Scholar
  10. Jin R-H, Yuan J-J (2007b) One-pot and rapid synthesis of uniformed silica spheres via mediation of linear poly(ethyleneimine)s and dyes. Polym J 39:822–827CrossRefGoogle Scholar
  11. Kosuge K, Sato T, Kikukawa N, Takemori M (2004) Morphological control of rod- and fiberlike sba-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater 16:899–905. doi: 10.1021/cm030622u CrossRefGoogle Scholar
  12. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132. doi: 10.1126/science.286.5442.1129 CrossRefGoogle Scholar
  13. Kuschel A, Sievers H, Polarz S (2008) Amino acid silica hybrid materials with mesoporous structure and enantiopure surfaces. Angew Chem Int Ed 47:9513–9517. doi: 10.1002/anie.200803405 CrossRefGoogle Scholar
  14. Li B, Chen Y, Zhao H, Pei X, Bi L, Hanabusa K, Yang Y (2008) From branched self-assemblies to branched mesoporous silica nanoribbons. Chem Commun 6366–6368. doi: 10.1039/b812016a
  15. Li L, Ding J, Xue J (2009) Macroporous silica hollow microspheres as nanoparticle collectors. Chem Mater 21:3629–3637. doi: 10.1021/cm900874u CrossRefGoogle Scholar
  16. Marner WD II, Shaikh AS, Muller SJ, Keasling JD (2008) Morphology of artificial silica matrices formed via autosilification of a silaffin/protein polymer chimera. Biomacromolecules 9:1–5. doi: 10.1021/bm701131x CrossRefGoogle Scholar
  17. Matsunaga S, Sakai R, Jimbo M, Kamiya H (2007) Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem 8:1729. doi: 10.1002/cbic.200700305 CrossRefGoogle Scholar
  18. Mészáros R, Nagy M, Varga I (1999) Nonequilibrium aspects of adsorption from a dilute aqueous solution of 1-propanol onto activated carbon: interrelation between the sorbent “concentration” effect and metastability. Langmuir 15:1307–1312. doi: 10.1021/la980849h CrossRefGoogle Scholar
  19. Seddon AM, Patel HM, Burkett SL, Mann S (2002) Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. Angew Chem Int Ed 41:2988–2991. doi: 10.1002/1521-3773 CrossRefGoogle Scholar
  20. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  21. Sumper M, Brunner E (2008) Silica biomineralisation in diatoms: the model organism thalassiosira pseudonana. ChemBioChem 9:1187–1194. doi: 10.1002/cbic.200700764 CrossRefGoogle Scholar
  22. Sumper M, Kröger N (2004) Silica formation in diatoms: the function of long-chain polyamines and silaffins. J Mater Chem 14:2059–2065. doi: 10.1039/b401028k CrossRefGoogle Scholar
  23. Sumper M, Lehmann G (2006) Silica pattern formation in diatoms: species-specific polyamine biosynthesis. ChemBioChem 7:1419–1427. doi: 10.1002/cbic.200600184 CrossRefGoogle Scholar
  24. Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR (2005) Polypeptide-templated synthesis of hexagonal silica platelets. J Am Chem Soc 127:12577–12582. doi: 10.1021/ja0524503 CrossRefGoogle Scholar
  25. Wenzl S, Hett R, Richthammer P, Sumper M (2008) Highly acidic phosphopeptides from diatom shells assist in silica precipitation in vitro. Angew Chem Int Ed 47:1729–1732. doi: 10.1002/anie.200704994 CrossRefGoogle Scholar
  26. Wu X, Ji S, Li Y, Zhu X, Hanabusa K, Yang Y (2009) Helical transfer through nonlocal interactions. J Am Chem Soc 131:5986–5993. doi: 10.1021/ja9001376 CrossRefGoogle Scholar
  27. Yuan J-J, Jin R-H (2005a) Fibrous crystalline hydrogels formed from polymers possessing a linear poly(ethyleneimine) backbone. Langmuir 21:3136–3145. doi: 10.1021/la047182l CrossRefGoogle Scholar
  28. Yuan J-J, Jin R-H (2005b) Multiply shaped silica mediated from aggregates of linear poly(ethyleneimine). Adv Mater 17:883–885. doi: 10.1002/adma.200401670 Google Scholar
  29. Yuan J-J, Zhu P-X, Fukazawa N, Jin R-H (2006) Synthesis of nanofiber-based silica networks mediated by organized poly(ethylene imine): structure, properties, and mechanism. Adv Funct Mater 16:2205–2212. doi: 10.1002/adfm.200500886 CrossRefGoogle Scholar
  30. Zhang L, D’Acunzi M, Kappl M, Auernhammer GK, Vollmer D (2009) Hollow silica spheres: synthesis and mechanical properties. Langmuir 25:2711–2717. doi: 10.1021/la803546r CrossRefGoogle Scholar
  31. Zhou L, Hong G, Qi L, Lu Y (2009) Seeding-growth of helical mesoporous silica nanofibers templated by achiral cationic surfactant. Langmuir 25:6040–6044. doi: 10.1021/la901083u CrossRefGoogle Scholar
  32. Zhu P-X, Fukazawa N, Jin R-H (2007) Polyethyleneimine aggregates regulated by metal cations acting as biomimetic organic reactors for silica architectures. Small 3:394–398. doi: 10.1002/smll.200600363 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Synthetic Chemistry LabKawamura Institute of Chemical ResearchSakuraJapan
  2. 2.JST-CRESTTokyoJapan

Personalised recommendations