Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 405–413 | Cite as

Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging

  • Qi Wang
  • Hongjun Ni
  • Annette Pietzsch
  • Franz Hennies
  • Yongping Bao
  • Yimin Chao
Research Paper


Water-dispersible silicon nanoparticles (Si-NPs) are desirable for applications in biological techniques. A simplified method to synthesize such particles is reported here. The resulting Si-NPs are water-dispersible and luminescent. Under the excitation of UV light, the Si-NPs emit strong red light with a peak maximum at 606 nm and a quantum yield of 6%. They are highly stable, and remain so over several weeks. Fourier Transform Infrared (FTIR) spectroscopy shows a visible Si–CH2 scissoring vibration mode. Furthermore, the surface chemical bondings were confirmed by X-ray photoelectron spectroscopy (XPS). In the Si2p and C1s core levels, Si–C components are observed. The diameters of the synthesized Si-NPS as measured by atomic force microscope (AFM) are approximately 5 nm. Furthermore, the nanoparticles can be taken up by cultured cells. Fluorescence images of Si-NPs within MCF-7 human breast cancer cells show they are distributed throughout the cell tissue.


Silicon nanoparticles Photoluminescence X-ray photoelectron spectroscopy Bio-imaging Nanobiology Nanomedicine 

Supplementary material

11051_2010_47_MOESM1_ESM.doc (1.3 mb)
(DOC 1314 kb)


  1. Alsharif NH, Berger CEM, Varanasi SS, Chao Y, Horrocks BR, Datta HK (2009) Alkyl-capped silicon nanocrystals lack cytotoxicity and have enhanced intracellular accumulation in malignant cells via cholesterol-dependent endocytosis. Small 5:221–228CrossRefGoogle Scholar
  2. Arya H, Kaul Z, Wadhwa R, Taira K, Hirano T, Kaul SC (2005) Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 329:1173–1177CrossRefGoogle Scholar
  3. Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843CrossRefGoogle Scholar
  4. Bley RA, Kauzlarich SM, Davis JE, Lee HWH (1996) Characterization of silicon nanoparticles prepared from porous silicon. Chem Mater 8:1881–1888CrossRefGoogle Scholar
  5. Bychto L, Balaguer M, Pastor E, Chirvony V, Matveeva E (2008) Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals. J Nanopart Res 10:1241–1249CrossRefGoogle Scholar
  6. Chao Y, Krishnamurthy S, Montalti M, Lie LH, Houlton A, Horrocks BR, Kjeldgaard L, Dhanak VR, Hunt MRC, Siller L (2005) Reactions and luminescence in passivated Si nanocrystallites induced by vacuum ultraviolet and soft-X-ray photons. J Appl Phys 98:044316CrossRefGoogle Scholar
  7. Chao Y, Houlton A, Horrocks BR, Hunt MRC, Poolton NRJ, Yang J, Šiller L (2006) Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: origin and temperature dependence of the blue and orange emissions. Appl Phys Lett 88:263119CrossRefGoogle Scholar
  8. Chao Y, Siller L, Krishnamurthy S, Coxon PR, Bangert U, Gass M, Kjeldgaard L, Patole SN, Lie LH, O’farrell N, Alsop TA, Houlton A, Horrocks BR (2007) Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum. Nat Nanotechnol 2:486–489CrossRefGoogle Scholar
  9. Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11036CrossRefGoogle Scholar
  10. Denecke R, Vaterlein P, Bassler M, Wassdahl N, Butorin S, Nilsson A, Rubensson JE, Nordgren J, Martensson N, Nyholm R (1999) Beamline I511 at MAX II, capabilities and performance. J Electron Spectrosc Relat Phenom 103:971–977CrossRefGoogle Scholar
  11. English DS, Pell LE, Yu Z, Barbara PF, Korgel BA (2002) Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett 2:681–685CrossRefGoogle Scholar
  12. Erogbogbo F, Yong KT, Roy I, Xu GX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. Acs Nano 2:873–878CrossRefGoogle Scholar
  13. Franchina JG, Lackowski WM, Dermody DL, Crooks RM, Bergbreiter DE, Sirkar K, Russell RJ, Pishko MV (1999) Electrostatic immobilization of glucose oxidase in a weak acid, polyelectrolyte hyperbranched ultrathin film on gold: fabrication, characterization, and enzymatic activity. Anal Chem 71:3133–3139CrossRefGoogle Scholar
  14. Froner E, Adamo R, Gaburro Z, Margesin B, Pavesi L, Rigo A, Scarpa M (2006) Luminescence of porous silicon derived nanocrystals dispersed in water: dependence on initial porous silicon oxidation. J Nanopart Res 8:1071–1074CrossRefGoogle Scholar
  15. Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19:415102CrossRefGoogle Scholar
  16. Hua FJ, Swihart MT, Ruckenstein E (2005) Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 21:6054–6062CrossRefGoogle Scholar
  17. Hua FJ, Erogbogbo F, Swihart MT, Ruckenstein E (2006) Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilylation followed by oxidation. Langmuir 22:4363–4370CrossRefGoogle Scholar
  18. Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467CrossRefGoogle Scholar
  19. Li ZF, Kang ET, Neoh KG, Tan KL (1998) Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. Biomaterials 19:45–53CrossRefGoogle Scholar
  20. Li QS, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) Theoretical studies on optical and electronic properties of propionic-acid-terminated silicon quantum dots. J Chem Theor Comput 3:1518–1526CrossRefGoogle Scholar
  21. Lie LH, Duerdin M, Tuite EM, Houlton A, Horrocks BR (2002) Preparation and characterisation of luminescent alkylated-silicon quantum dots. J Electroanal Chem 538:183–190CrossRefGoogle Scholar
  22. Neiner D, Chiu HW, Kauzlarich SM (2006) Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J Am Chem Soc 128:11016–11017CrossRefGoogle Scholar
  23. Puniredd SR, Assad O, Haick H (2008) Highly stable organic modification of Si(111) surfaces: towards reacting Si with further functionalities while preserving the desirable chemical properties of full Si–C atop site terminations. J Am Chem Soc 130:9184–9185CrossRefGoogle Scholar
  24. Rogozhina E, Belomoin G, Smith A, Abuhassan L, Barry N, Akcakir O, Braun PV, Nayfeh MH (2001) Si–N linkage in ultrabright, ultrasmall Si nanoparticles. Appl Phys Lett 78:3711–3713CrossRefGoogle Scholar
  25. Rosso-Vasic M, Spruijt E, Van Lagen B, De Cola L, Zuilhof H (2008) Alkyl-functionalized oxide-free silicon nanoparticles: synthesis and optical properties. Small 4:1835–1841CrossRefGoogle Scholar
  26. Rosso-Vasic M, Spruijt E, Popovic Z, Overgaag K, Van Lagen B, Grandidier B, Vanmaekelbergh D, Dominguez-Gutierrez D, de Cola L, Zuilhof H (2009) Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging. J Mater Chem 19:5926–5933CrossRefGoogle Scholar
  27. Sa’ar A, Reichman Y, Dovrat M, Krapf D, Jeduejewski J, Balberg I (2005) Resonant coupling between surface vibrations and electronic states in silicon nanocrystals at the strong confinement regime. Nano Lett 5:2443–2447CrossRefGoogle Scholar
  28. Sato S, Swihart MT (2006) Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization. Chem Mater 18:4083–4088CrossRefGoogle Scholar
  29. Seotsanyana-Mokhosi I, Kuznetsova N, Nyokong T (2001) Photochemical studies of tetra-2,3-pyridinoporphyrazines. J Photochem Photobiol A Chem 140:215–222CrossRefGoogle Scholar
  30. Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD (2010) Chemical reactions on surface molecules attached to silicon quantum dots. J Am Chem Soc 132:248–253CrossRefGoogle Scholar
  31. Tilley RD, Yamamoto K (2006) The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv Mater 18:2053–2056CrossRefGoogle Scholar
  32. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554CrossRefGoogle Scholar
  33. Williams ATR, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108:1067–1071CrossRefGoogle Scholar
  34. Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82:197–200CrossRefGoogle Scholar
  35. Wu K, Song L, Hu Y, Lu HD, Kandola BK, Kandare E (2009) Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin. Prog Org Coat 65:490–497CrossRefGoogle Scholar
  36. Yu ZR, Aceves-Mijares M, Cabrera MAI (2006) Single electron charging and transport in silicon rich oxide. Nanotechnology 17:3962–3967CrossRefGoogle Scholar
  37. Zhang XM, Neiner D, Wang SZ, Louie AY, Kauzlarich SM (2007) A new solution route to hydrogen-terminated silicon nanoparticles: synthesis, functionalization and water stability. Nanotechnology 18:095601CrossRefGoogle Scholar
  38. Zhu XP, Yukawa T, Kishi T, Hirai M, Suematsu H, Jiang WH, Yatsui K (2005) Synthesis of light-emitting silicon nanoparticles by intense pulsed ion-beam evaporation. J Nanopart Res 7:669–673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Qi Wang
    • 1
  • Hongjun Ni
    • 2
  • Annette Pietzsch
    • 3
  • Franz Hennies
    • 3
  • Yongping Bao
    • 4
  • Yimin Chao
    • 1
  1. 1.Energy Materials LabSchool of Chemistry, University of East AngliaNorwichUK
  2. 2.School of Mechanical EngineeringNantong UniversityNantongChina
  3. 3.MAX-LabLund UniversityLundSweden
  4. 4.Biomedical Research CentreUniversity of East AngliaNorwichUK

Personalised recommendations