Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 233–244 | Cite as

Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution

  • Larissa V. Stebounova
  • Ethan Guio
  • Vicki H. Grassian
Research Paper


Nanoparticles, the building blocks of many engineered nanomaterials, can make their way into the environment or into organisms, either accidentally or purposefully. The intent of this study is to provide some insight into the complex environmental, health, and safety issues associated with engineered nanomaterials. In particular, here the state of commercially manufactured silver nanoparticles—i.e., will silver nanoparticles be present as isolated particles, agglomerates, or dissolved ions—in two simulated biological media is explored. Two different commercially manufactured silver nanoparticle samples, one that has been surface modified with a thick polymer coating to render them more water-soluble and the other, with a sub-nanometer surface layer, are studied. The experimental results and the extended DLVO model calculations show that silver nanoparticles have a propensity to settle out in high ionic strength media independent of surface modification. Furthermore, single nanoparticles as well as aggregates/agglomerates are present together in these solutions. Silver ion release in these simulated biological buffers with pHs of 4.5 and 7.4 is negligible after 96 h.


Silver nanoparticles Agglomeration Dissolution Sedimentation Artificial biological fluids Health and safety 



This article is based upon the study supported by the National Institutes of Occupational Health and Safety under Grant R01OH009448.


  1. Ashrani PV, Wu WL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102CrossRefGoogle Scholar
  2. Bastus NG, Casals E, Vazquez-Campos S, Puntes V (2008) Reactivity of engineered inorganic nanoparticles and carbon nanostructures in biological media. Nanotoxicology 2(3):99–112CrossRefGoogle Scholar
  3. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(11):1–36Google Scholar
  4. Bostrom M, Deniz V, Franks GV, Ninham BW (2006) Extended DLVO theory: electrostatic and non-electrostatic forces in oxide suspensions. Adv Colloid Interface Sci 123–126:5–15CrossRefGoogle Scholar
  5. Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C) nanoparticles. Langmuir 22(26):10994–11001CrossRefGoogle Scholar
  6. Damm C, Münstedt H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66CrossRefGoogle Scholar
  7. Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28(6):1191–1199CrossRefGoogle Scholar
  8. Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12(5):1945–1958CrossRefGoogle Scholar
  9. Englebienne P, Hoonacker AV, Verhas M (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy (Amsterdam, Netherlands) 17(2–3):255–273Google Scholar
  10. Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007a) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 15(3):397–402Google Scholar
  11. Grassian VH, Adamcakova-Dodd A, Pettibone JM, O’Shaughnessy PT, Thorne PS (2007b) Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology 1(3):211–226CrossRefGoogle Scholar
  12. Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticle. Environ Sci Technol 40(24):7688–7693CrossRefGoogle Scholar
  13. Heath JR (1989) Size-dependent surface-plasmon resonances of bare silver particles. Phys Rev B 40:9982–9985CrossRefGoogle Scholar
  14. Huang T, Nallathamby PD, Gillet D, Xu X-HN (2007) Design and synthesis of single-nanoparticle optical biosensors for imaging and characterization of single receptor molecules on single living cells. Anal Chem 79:7708–7718CrossRefGoogle Scholar
  15. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRefGoogle Scholar
  16. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19(10):857–871Google Scholar
  17. Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, Choi BS, Lim R, Chang HK, Chung YH, Kwon IH, Jeong J, Han BS, Yu IJ (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 20(6):575–583Google Scholar
  18. Klaine SJ (2009) Considerations for research on the environmental fate and effects of nanoparticles. Environ Toxicol Chem 28(9):1787–1788CrossRefGoogle Scholar
  19. Lecoanet HF, Bottero J-Y, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164–5169CrossRefGoogle Scholar
  20. Lee K, Sathyagal AN, McCormick AV (1998) A closer look at an aggregation model of the Stober process. Colloids Surf A Physicochem Eng Asp 144:115–125CrossRefGoogle Scholar
  21. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN (2007) In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143CrossRefGoogle Scholar
  22. Lee K-C, Lin S-J, Lin C-H, Tsai C-S, Lu Y-J (2008) Size effect of Ag nanoparticles on surface plasmon resonance. Surf Coat Technol 202:5339–5342CrossRefGoogle Scholar
  23. Li X, Zhang J, Xu W, Jia H, Wang X, Yang B, Zhao B, Li B, Osaki Y (2003) Mercaptoacetic acid-capped silver nanoparticles colloid: formation, morphology, and SERS activity. Langmuir 19:4285–4290CrossRefGoogle Scholar
  24. Lok C-N, Ho C-M, Chen R, He Q-H, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:1432–1437CrossRefGoogle Scholar
  25. Luoma SN (2008) Silver nanotechnologies and the environment: old problems or new challenges? Project on Emerging Nanotechnologies reports PEN 15Google Scholar
  26. Moss OR (1979) Simulants of lung interstitial fluid. Health Phys 36:447–448Google Scholar
  27. Nallathamby PD, Lee KJ, Xu X-HN (2008) Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. ACS Nano 2(7):1371–1380CrossRefGoogle Scholar
  28. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839CrossRefGoogle Scholar
  29. Pettibone JM, Elzey S, Grassian VH (2008a) An integrated approach toward understanding the environmental fate, transport, toxicity, and health hazards of nanomaterials. In: Grassian VH (ed) Nanoscience and nanotechnology: environmental and health implications. Wiley, New York, pp 43–68CrossRefGoogle Scholar
  30. Pettibone JM, Adamcakova-Dodd A, Thorne PS, O’Shaughnessy PT, Weydert JA, Grassian VH (2008b) Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology 2(4):189–204CrossRefGoogle Scholar
  31. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008c) Adsorption of organic acids on TiO2 nanoparticles. Effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24(13):6659–6667CrossRefGoogle Scholar
  32. Phenrat T, Saleh N, Sirk K, Kim H-J, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10:795–814CrossRefGoogle Scholar
  33. Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303CrossRefGoogle Scholar
  34. SAP Minutes No. 2010-01. A set of scientific issues being considered by the Environmental Protection Agency regarding: evaluation of the hazard and exposure associated with nanosilver and other nanometal pesticide products. FIFRA Scientific Advisory Panel meeting, Environmental Protection Agency, Arlington, 3–5 Nov 2009Google Scholar
  35. Scheckel KG, Luxton TP, El Badawy AM, Impellitteri CA, Tolaymat TM (2010) Synchrotron speciation of silver and zinc oxide nanoparticles aged in a kaolin suspension. Environ Sci Technol 44(4):1307–1312CrossRefGoogle Scholar
  36. Schmoll LH, Elzey S, Grassian VH, O’Shaughnessy PT (2009) Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies. Nanotoxicology 3(4):265–275CrossRefGoogle Scholar
  37. Shah PS, Holmes JD, Johnston KP, Korgel BA (2002) Size-selective dispersion of dodecanethiol-coated nanocrystals in liquid and supercritical ethane by density tuning. J Phys Chem B 106:2545–2551CrossRefGoogle Scholar
  38. Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM (2007) Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol 26:135–141CrossRefGoogle Scholar
  39. Smitha SL, Nissamdeen KM, Philip D, Gopchandran KG (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A 71:186–190CrossRefGoogle Scholar
  40. Stopford W, Turner J, Cappellini D, Brock T (2003) Bioaccessibility testing of cobalt compounds. J Environ Monit 5:675–680CrossRefGoogle Scholar
  41. Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 20(6):567–574Google Scholar
  42. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109:547–551Google Scholar
  43. Vallopil SP, Pickup DM, Carroll DL, Hope CK, Pratten J, Newport RJ, Smith ME, Knowles JC (2007) Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob Agents Chemother 51:4453–4461CrossRefGoogle Scholar
  44. Vikesland PJ, Heathcock AM, Rebodos RL, Makus KE (2007) Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environ Sci Technol 41(15):5277–5283CrossRefGoogle Scholar
  45. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Van De Meent D, Dekkers S, De Jong WH, van Zijverden M, Sips AJAM, Geertsma RE (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Larissa V. Stebounova
    • 1
    • 2
  • Ethan Guio
    • 3
  • Vicki H. Grassian
    • 1
    • 2
    • 3
  1. 1.Department of ChemistryUniversity of IowaIowaUSA
  2. 2.The Nanoscience and Nanotechnology InstituteUniversity of IowaIowaUSA
  3. 3.Department of Chemical and Biochemical EngineeringUniversity of IowaIowaUSA

Personalised recommendations