Journal of Nanoparticle Research

, Volume 13, Issue 1, pp 199–212 | Cite as

Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines

Research Paper

Abstract

This article systematically evaluated the biocompatibility of multiple mammalian cell lines to 11-nm DMSA-coated Fe3O4 magnetic nanoparticles (MNPs). Cells including RAW264.7, THP-1, Hepa1-6, HepG2, HL-7702, and HeLa were incubated with six different concentrations (0, 20, 30, 40, 50, and 100 μg/mL) of MNPs for 48 h, and then the cell labeling, iron loading, cell viability, apoptosis, cycle, and oxidative stress were all quantitatively evaluated. The results revealed that all the cells were effectively labeled by the nanoparticles; however, the iron loading of RAW264.7 was significantly higher than that of other cells at any dose. The proliferations of all the cells were not significantly suppressed by MNPs at the studied dose except HepG2 that was exposed to 100 μg/mL MNPs. The investigation of oxidative stress demonstrated that the levels of total superoxide dismutase and xanthine oxidase had no significant changes in all the cells treated by all the doses of MNPs, while the levels of malonyldialdehyde activity of MNP-treated cells significantly increased. The nanoparticles did not produce any significant effect on cell cycles at any of the doses, but resulted in significant apoptosis of THP-1 and HepG2 cells at the highest concentration of 100 μg/mL. At a concentration of 30 μg/mL which was used in human studies with an intravascular nanoparticle imaging agent (Combidex), the nanoparticles efficiently labeled all the cells studied, but did not produce any significant influence on their viability, oxidative stress, and apoptosis and cycle. Therefore, the nanoparticles were concluded with better biocompatibility, which provided some useful information for its clinical applications.

Keywords

Magnetic nanoparticles Uptake Biocompatibility Oxidative stress Apoptosis Health and safety 

References

  1. Adams PE (1995) Determining iron content in foods by spectrophotometry. J Chem Educ 72(7):649–665CrossRefGoogle Scholar
  2. Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, Berge-Lefranc JL, Botta A, Wiesner MR, Bottero JY (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40:4367–4373CrossRefGoogle Scholar
  3. Bacon BR, Stark DD, Park CH, Saini S, Groman EV, Hahn PF, Compton CC, Ferrucci JT (1987) Ferrite particles: a new magnetic resonance imaging contrast agent. Lack of acute or chronic hepatotoxicity after intravenous administration. J Lab Clin Med 110:164–171Google Scholar
  4. Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557CrossRefGoogle Scholar
  5. Berry CC, Wells S, Charles S, Aitchison G, Curds ASG (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25(23):5405–5413CrossRefGoogle Scholar
  6. Beyer WF, Fridovich I (1991) Phosphate, not superoxide dismutase, facilitates electron transfer from ferrous salts to cytochrome c. Arch Biochem Biophys 285:60–63CrossRefGoogle Scholar
  7. Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3:48–55CrossRefGoogle Scholar
  8. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147CrossRefGoogle Scholar
  9. Chen ZP, Xu RZ, Zhang Y, Gu N (2005) Effects of proteins from culture medium on surface property of silanes-functionalized magnetic nanoparticles. Nanoscale Res Lett 40(2):83–91Google Scholar
  10. Chen ZP, Zhang Y, Zhang S, Xia JG, Liu JW, Xu K, Gu N (2008) Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids Surf A Physicochem Eng Asp 316:210–216CrossRefGoogle Scholar
  11. Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26(7):729–738CrossRefGoogle Scholar
  12. Duguet E, Vasseur S, Mornet S, Devoisselle JM (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1(2):157–168CrossRefGoogle Scholar
  13. Dunning MD, Lakatos A, Loizou L, Kettunen M, Ffrench-Constant C, Brindle KM, Franklin RJ (2004) Superparamagnetic iron oxide-labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24(44):9799–9810CrossRefGoogle Scholar
  14. Farrell E, Wielopolski P, Pavljasevic P, Kops N, Weinans H, Bernsen MR, van Osch GJ (2009) Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour. Osteoarthritis Cartilage 17(7):961–967CrossRefGoogle Scholar
  15. Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol 158:357–364CrossRefGoogle Scholar
  16. Gajdosíková A, Gajdosík A, Koneracká M, Závisová V, Stvrtina S, Krchnárová V, Kopcanský P, Tomasovicová N, Stolc S, Timko M (2006) Acute toxicity of magnetic nanoparticles in mice. Neuro Endocrinol Lett 27(Suppl 2):96–99Google Scholar
  17. Green-Sadan T, Kuttner Y, Lublin-Tennenbaum T, Kinor N, Boguslavsky Y, Margel S, Yadid G (2005) Glial cell line-derived neurotrophic factor-conjugated nanoparticles suppress acquisition of cocaine self-administration in rats. Exp Neurol 194(1):97–105CrossRefGoogle Scholar
  18. Gupta AK, Curtis AS (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496CrossRefGoogle Scholar
  19. Häfeli UO, Pauer GJ (1999) In vitro and in vivo toxicity of magnetic microspheres. J Magn Magn Mater 194:76–82CrossRefGoogle Scholar
  20. Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6(5):1417–1428CrossRefGoogle Scholar
  21. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499CrossRefGoogle Scholar
  22. Huang HC, Chang PY, Chang K, Chen CY, Lin CW, Chen JH, Mou CY, Chang ZF, Chang FH (2009) Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging. J Biomed Sci 16(1):86CrossRefGoogle Scholar
  23. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983CrossRefGoogle Scholar
  24. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100(1):1–11CrossRefGoogle Scholar
  25. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205CrossRefGoogle Scholar
  26. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5(2):316–327CrossRefGoogle Scholar
  27. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(12):2699–2711Google Scholar
  28. Ju SH, Teng GJ, Zhang Y, Ma M, Chen F, Ni YY (2006) In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn Reson Imaging 24(5):611–617CrossRefGoogle Scholar
  29. Kalambur VS, Longmire EK, Bischof JC (2007) Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir 23(24):12329–12336CrossRefGoogle Scholar
  30. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338–347CrossRefGoogle Scholar
  31. Lacava LM, Garcia VAP, Kückelhaus S, Azevedo RB, Sadeghiani N, Buske N, Morais PC, Lacava ZGM (2004) Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 272:2434–2435CrossRefGoogle Scholar
  32. Lin BL, Shen XD, Cui S (2007) Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties. Biomed Mater 2(2):132–134CrossRefGoogle Scholar
  33. Liu S, Long L, Yuan Z, Yin L, Liu R (2009) Effect and intracellular uptake of pure magnetic Fe3O4 nanoparticles in the cells and organs of lung and liver. Chinese Med J 122(15):1821–1825Google Scholar
  34. Maxwell DJ, Bonde J, Hess DA, Hohm SA, Lahey R, Zhou P, Creer MH, Piwnica-Worms D, Nolta JA (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26(2):517–524CrossRefGoogle Scholar
  35. Muller K, Skeppera J, Posfaib M, Trivedi R, Howarth S, Corot C, Lancelot E, Thompson P, Brown A, Gillard J (2007) Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials 28(9):1629–1642CrossRefGoogle Scholar
  36. Nebot C, Moutet M, Huet P, Xu JZ, Yadan JC, Chaudiere J (1993) Spectrophotometric assay of superoxide dismutase activity based on the activated autoxidation of a tetracyclic catechol. Anal Biochem 214:442–451CrossRefGoogle Scholar
  37. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):167–181CrossRefGoogle Scholar
  38. Pieters R, Huismans DR, Leyva A, Veerman AJP (1989) Comparison of the rapid automated MTT-assay with a dye exclusion assay for chemosensitivity testing in childhood leukaemia. Br J Cancer 59:217–220CrossRefGoogle Scholar
  39. Pisanic TR, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28(16):2572–2581CrossRefGoogle Scholar
  40. Rad AM, Janic B, Iskander ASM, Soltanian-Zadeh H, Arbab AS (2007) Measurement of quantity of iron in magnetically labeled cells: comparison among different UV/VIS spectrometric methods. Biotechniques 43:627–636CrossRefGoogle Scholar
  41. Rivière C, Boudghène FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D, Deux JF (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235:959–967CrossRefGoogle Scholar
  42. Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468CrossRefGoogle Scholar
  43. Schwarz S, Fernandes F, Sanroman L, Hodenius M, Lang C, Himmelreich U, Schmitz-Rode T, Schueler D, Hoehn M, Zenke M, Hieronymus T (2009) Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J Magn Magn Mater 321:1533–1538CrossRefGoogle Scholar
  44. Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R (2008) Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci USA 105(21):7387–7392CrossRefGoogle Scholar
  45. Shubayev VI, Pisanic TR, Jin S (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 6:467–477CrossRefGoogle Scholar
  46. Song M, Moon WK, Kim Y, Lim D, Song IC, Yoon BW (2007) Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J Radiol 8:365–371CrossRefGoogle Scholar
  47. Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, Pilgrimm H, Grune T (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984CrossRefGoogle Scholar
  48. Tiefenauer LX (2007) Chapter 29: Magnetic nanoparticles as contrast agents for medical diagnosis. In: Vo-Dinh T (ed) Nanotechnology in biology and medicine: methods, devices, and applications. CRC Press, Boca Raton, pp 1–20Google Scholar
  49. Tucker BA, Rahimtula M, Mearow KM (2005) A procedure for selecting and culturing subpopulations of neurons from rat dorsal root ganglia using magnetic beads. Brain Res Brain Res Protoc 16(1–3):50–57CrossRefGoogle Scholar
  50. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  51. Weber C, Falkenhagen D (1997) Specific blood purification by means of antibody-conjugated magnetic microspheres. In: Hafeli U, Shutt W, Teller J, Zborowski M (eds) Scientific and clinical applications of magnetic carriers. Plenum Press, New York, pp 371–378Google Scholar
  52. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173Google Scholar
  53. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6(3):351–355CrossRefGoogle Scholar
  54. Wesselius LJ, Williams WL, Bailey K, Vamos S, O’Brien-Ladner AR, Wiegmann T (1999) Iron uptake promotes hyperoxic injury to alveolar macrophages. Am J Respir Crit Care Med 159(1):100–106Google Scholar
  55. Wilhelm C, Gazeau F (2008) Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29:3161–3174CrossRefGoogle Scholar
  56. Wilhelm C, Gazeau F, Bacri JC (2002a) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur Biophys J 31(2):118–125CrossRefGoogle Scholar
  57. Wilhelm C, Gazeau F, Roger J, Pons JN, Bacri JC (2002b) Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21):8148–8155CrossRefGoogle Scholar
  58. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011CrossRefGoogle Scholar
  59. Yu Z, Xiaoliang W, Xuman W, Hong X, Hongchen G (2008) Acute toxicity and irritation of water-based dextran-coated magnetic fluid injected in mice. J Biomed Mater Res 85(3):582–587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina

Personalised recommendations