Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1677–1685 | Cite as

Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities

  • Bhupendra Chudasama
  • Anjana K. Vala
  • Nidhi Andhariya
  • R. V. Mehta
  • R. V. Upadhyay
Research Paper

Abstract

In this article, we describe a simple one-pot rapid synthesis route to produce uniform silver nanoparticles by thermal reduction of AgNO3 using oleylamine as reducing and capping agent. To enhance the dispersal ability of as-synthesized hydrophobic silver nanoparticles in water, while maintaining their unique properties, a facile phase transfer mechanism has been developed using biocompatible block co-polymer pluronic F-127. Formation of silver nanoparticles is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–vis spectroscopy. Hydrodynamic size and its distribution are obtained from dynamic light scattering (DLS). Hydrodynamic size and size distribution of as-synthesized and phase transferred silver nanoparticles are 8.2 ± 1.5 nm (σ = 18.3%) and 31.1 ± 4.5 nm (σ = 14.5%), respectively. Antimicrobial activities of hydrophilic silver nanoparticles is tested against two Gram positive (Bacillus megaterium and Staphylococcus aureus), and three Gram negative (Escherichiacoli, Proteusvulgaris and Shigellasonnei) bacteria. Minimum inhibitory concentration (MIC) values obtained in the present study for the tested microorganisms are found much better than those reported for commercially available antibacterial agents.

Keywords

Silver nanoparticles Pluronic F-127 Antibacterial activity Minimum inhibitory concentration Nanomedicine 

References

  1. Asharani P, Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102CrossRefADSGoogle Scholar
  2. Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568CrossRefADSGoogle Scholar
  3. Chandaroy P, Sen A, Alexandridis P, Hui S (2002) Utilizing temperature-sensitive association of Pluronic F-127 with lipid bilayers to control liposome-cell adhesion. Biochim Biophys Acta 1559:32–42CrossRefPubMedGoogle Scholar
  4. Chen M, Feng YG, Wang X, Li TC, Zhang JY, Qian DJ (2007) Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 23:5296–5304CrossRefPubMedGoogle Scholar
  5. Chudasama B, Vala A, Andhariya N, Mehta R, Upadhyay R (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2:955–965CrossRefGoogle Scholar
  6. Cubillo A, Pecharroman C, Aguilar E, Santaren J, Moya J (2006) Antibacterial activity of copper monodispersed nanoparticles into sepiolite. J Mater Sci 41:5208–5212CrossRefADSGoogle Scholar
  7. Desai V, Kowshik M (2009) Antimicrobial activity of titanium dioxide nanoparticles synthesized by sol-gel technique. Res J Microbiol 4:97–103CrossRefGoogle Scholar
  8. Elechiguerra JL, Burt JL, Morons JR, Camacho-bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. Nanobiotechnol 3:6–16CrossRefGoogle Scholar
  9. Esumi K, Tano T, Torigoe K, Meguru K (1990) Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567CrossRefGoogle Scholar
  10. Feng QL, Wu J, Chen GO, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRefPubMedGoogle Scholar
  11. Gao F, Lu QY, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860CrossRefGoogle Scholar
  12. Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604CrossRefADSGoogle Scholar
  13. Gonzales M, Krishnan KM (2007) Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biological applications. J Magn Magn Mater 311:59–62CrossRefADSGoogle Scholar
  14. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539CrossRefGoogle Scholar
  15. Hiramatsu H, Osterloh FE (2004) A simple large scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511CrossRefGoogle Scholar
  16. Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng FC, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912CrossRefGoogle Scholar
  17. Jana NR, Peng XG (2003) Single-phase and gram-scale routes toward nearly monadisperse Au and other noble metal nanocrystals. J Am Chem Soc 125:14280–14281CrossRefPubMedGoogle Scholar
  18. Kawashita M, Toda S, Kim HM, Kokubo T, Masuda NJ (2003) Preparation of antibacterial silver-doped silica glass microspheres. Biomed Mater Res A 66:266–274CrossRefGoogle Scholar
  19. Kewibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinGoogle Scholar
  20. Kloepfer J, Mielke R, Nadeau J (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. Appl Environ Microbiol 71:2548–2557CrossRefPubMedGoogle Scholar
  21. Kluytmans J, Van BA, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520PubMedGoogle Scholar
  22. Kroser J (2008) Shigellosis: overview: emedicine 12Google Scholar
  23. Kyriacou SV, Brownlow WJ, Xu X-HN (2004) Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells. Biochemistry 43:140–147CrossRefPubMedGoogle Scholar
  24. Lee GJ, Shin SI, Kim YC, Oh SG (2004) Preparation of silver nanorods through the control of temperature and pH of reaction medium. Mater Chem Phys 84:197–204CrossRefGoogle Scholar
  25. Lee D, Cohen RE, Rubner MF (2005) Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21:9651–9659CrossRefPubMedGoogle Scholar
  26. Liz-Marzan LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J Phys Chem 99:15120–15128CrossRefGoogle Scholar
  27. Mafune F, Kohnok JY, Takeda Y, Kondow T (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337CrossRefGoogle Scholar
  28. Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ (2005) Silver(I) imidazole cyclophane gem-dio\complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291CrossRefPubMedGoogle Scholar
  29. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346CrossRefADSGoogle Scholar
  30. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800CrossRefGoogle Scholar
  31. Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged gold and silver nanoparticle arrays. J Am Chem Soc 122:3979–3980CrossRefGoogle Scholar
  32. Nover L, Scharf KD, Nuemann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655PubMedGoogle Scholar
  33. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiology 73:1712–1720CrossRefGoogle Scholar
  34. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253CrossRefPubMedGoogle Scholar
  35. Qourzal S, Tamimi M, Assabbane A, Bouamrane A, Nounah A, Laanab L, Ait-Ichou Y (2006) Preparation of TiO2 photocatalyst using TiCl4 as a precursor and its photocatalytic performance. J Appl Sci 6:1553–1559 CrossRefGoogle Scholar
  36. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941CrossRefPubMedGoogle Scholar
  37. Roy R, Hoover MR, Bhalla AS, Slaweekl T, Dey S, Cao W, Li J, Bhaskar S (2008) Ultradilute Ag-aquasols with extraordinary bactericidal properties: role of the system Ag-O-H2O. Mater Res Innov 11:3–18CrossRefGoogle Scholar
  38. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefPubMedADSGoogle Scholar
  39. Sun YG, Yin YD, Mayers BT, Herricks T, Xia YN (2002) Uniform silver nanowires can be synthesized by reducing AgNo3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736–4745CrossRefGoogle Scholar
  40. Sun YG, Mayers B, Xia YN (2003) Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett 3:675–679CrossRefADSGoogle Scholar
  41. Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950–959CrossRefGoogle Scholar
  42. Tiwari D, Behari J, Sen P (2008) Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95:647–655Google Scholar
  43. Todak K (2007) Online textbook of bacteriology. University of Wisconsin-Madison, p 11Google Scholar
  44. Toshima N, Yonezawa T, Kushihashi K (1993) Polymer-protected palladium–platinum bimetallic clusters: preparation, catalytic properties and structural considerations. J Chem Soc Faraday Trans 89:2537–2543CrossRefGoogle Scholar
  45. Vertelov GK, Krutyakov YA, Efremenkova OV, Olenin AY, Lisichkin GV (2008) A versatile synthesis of highly bactericidal Myramistin® stabilized silver nanoparticles. Nanotechnology 19:355707CrossRefGoogle Scholar
  46. Xiong YJ, Xie Y, Du GO, Liu XM, Tian XB (2002) Ultrasound-assisted self-regulation route to Ag nanorods. Chem Lett 31:98–99CrossRefGoogle Scholar
  47. Yamamoto O, Sawai J, Ishimura N, Kojima H, Sasumoto T (1999) Change of antibacterial activity with oxidation of ZnS powder. J Ceram Soc Jpn 107:853–856Google Scholar
  48. Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci 15:847–851Google Scholar
  49. Yanagihara N, Tanaka Y, Okamotot H (2001) Formation of silver nanoparticles in poly(methyl methacrylate) by UV irradiation. Chem Lett 30:796–797CrossRefGoogle Scholar
  50. Zhang ZQ, Patel RC, Kothari R, Johnson CP, Friberg SE, Aikens PA (2000) Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J Phys Chem B 104:1176–1182CrossRefGoogle Scholar
  51. Zhang J, Rana S, Srivastava R, Misra R (2008) On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Acta Biomater 4:40–48CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Bhupendra Chudasama
    • 1
  • Anjana K. Vala
    • 2
  • Nidhi Andhariya
    • 2
  • R. V. Mehta
    • 2
  • R. V. Upadhyay
    • 3
  1. 1.School of Physics & Materials ScienceThapar UniversityPatialaIndia
  2. 2.Department of PhysicsBhavnagar UniversityBhavnagarIndia
  3. 3.P.D. Patel Institute of Applied SciencesCharotar University of Science and TechnologyChangaIndia

Personalised recommendations