Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1733–1742 | Cite as

Biocompatibility of nanoactuators: stem cell growth on laser-generated nickel–titanium shape memory alloy nanoparticles

  • Stephan Barcikowski
  • Anne Hahn
  • Merlin Guggenheim
  • Kerstin Reimers
  • Andreas Ostendorf
Research paper


Nanoactuators made from nanoparticulate NiTi shape memory alloy show potential in the mechanical stimulation of bone tissue formation from stem cells. We demonstrate the fabrication of Ni, Ti, and NiTi shape memory alloy nanoparticles and their biocompatibility to human adipose-derived stem cells. The stoichiometry and phase transformation property of the bulk alloy is preserved during attrition by femtosecond laser ablation in liquid, giving access to colloidal nanoactuators. No adverse effect on cell growth and attachment is observed in proliferation assay and environmental electron scanning microscopy, making this material attractive for mechanical stimulation of stem cells.


Nanoparticles Nanoactuators Nickel Titanium Nitinol Biocompatibility Stem cell Laser ablation Bone tissue formation Nanomedicine 



This work was supported by the German Research Foundation within the TransRegio 37 “Micro- and Nanosystems in Medicine—Reconstruction of biologic Functions” and within the projects BA 3580/2-1 and CH-179/9-1. The authors thank Juan Manuel Bellver for carrying out part of the investigation on femtosecond laser ablation at the LZH.


  1. Ausanio G, Barone AC, Iannotti V, Lanotte L, Amoroso S, Bruzzese R, Vitello M (2004) Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation. Appl Phys Lett 85:4103–4105CrossRefADSGoogle Scholar
  2. Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007a) Properties of nanoparticles generated during femtosecond laser machining an air and water. J Appl Phys A 87:47–55CrossRefADSGoogle Scholar
  3. Barcikowski S, Menéndez-Manjón A, Chichkov B, Brikas M, Račiukaitis G (2007b) Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl Phys Lett 91:083113Google Scholar
  4. Besner S, Kabashin AV, Meunier M (2006) Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation. Appl Phys Lett 89:233122CrossRefADSGoogle Scholar
  5. Bruinink A, Siragusano D, Ettel G, Brandsberg T, Brandsberg F, Petitmermet M, Müller B, Mayer J, Wintermantel E (2001) The stiffness of bone marrow cell–knit composites is increased during mechanical load. Biomaterials 22:3169–3178CrossRefPubMedGoogle Scholar
  6. Frenzel J, Zhang Z, Neuking K, Eggeler G (2004) High quality vacuum induction melting of small quantities of NiTi shape memory alloys in graphite crucibles. J Alloy Compd 385:214–223CrossRefGoogle Scholar
  7. Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10:566–571CrossRefPubMedGoogle Scholar
  8. González-Caballero F, Shilov VN (2006) Encyclopedia of surface and colloidal science. Taylor and Francis, Boca Raton, p 1932Google Scholar
  9. Habijan T, Bremm O, Esenwein SA, Muhr G, Köller M (2007) Influence of nickel ions on human multipotent mesenchymal stromal cells (hMSCs). Mater Sci Eng 38:969–974Google Scholar
  10. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer HJ (2005) A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. Mater Sci Mater Med 16:883–888CrossRefGoogle Scholar
  11. Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943CrossRefADSGoogle Scholar
  12. Kazakevich PV, Voronov VV, Simakin AV, Shafeev GA (2004) Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electron 34(10):951–956CrossRefADSGoogle Scholar
  13. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub H, Stölzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nanoletters 5(2):331–338ADSGoogle Scholar
  14. Lee IC, Wang JH, Lee YT, Young TH (2007) The differentiation of mesenchymal stem cells by mechanical stress or and co-culture system. Biochem Biophys Res Commun 352:147–152CrossRefPubMedGoogle Scholar
  15. Mafuné F, Kohno J, Takeda Y, Kondow T (2001) Dissociation and aggregation of gold nanoparticles under laser irradiation. J Phys Chem B 105:9050–9056CrossRefGoogle Scholar
  16. Mafuné F, Kohno J, Takeda Y, Kondow T (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem 107:4218–4223Google Scholar
  17. Maloney WJ, Smith RL, Castro F, Schurman DJ (1993) Fibroblast response to metallic debris in vitro. Enzyme induction cell proliferation, and toxicity. J Bone Joint Surg 75:835–844PubMedGoogle Scholar
  18. Mauro F (1969) Variations in sulfhydryl, disulfide, and protein content during synchronous and asynchronous growth of HeLa cells. Biophys J 9:1377–1397CrossRefPubMedGoogle Scholar
  19. Park SJ, Chu JSF, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:359–368CrossRefPubMedGoogle Scholar
  20. Petersen S, Barcikowski S (2009) In situ bioconjugation—single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172CrossRefGoogle Scholar
  21. Pommerenke H, Schmidt C, Dürr F, Nebe B, Lüthen F, Müller P, Rychly J (2002) The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. J Bone Miner Res 17:603–611CrossRefPubMedGoogle Scholar
  22. Pushin VG, Valiev RZ (2003) The nanostructured TiNi shape-memory alloys: new properties and applications. Solid State Phenom 94:13–24CrossRefGoogle Scholar
  23. Pyatenko A, Yamaguchi M, Suzuki M (2007) Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J Phys Chem C 111(22):7910–7917CrossRefGoogle Scholar
  24. Reichert J, Brückner S, Bartelt H, Jandt KD (2007) Tuning cell adhesion on PTFE surfaces by laser induced microstructures. Adv Eng Mater 9:1104–1113CrossRefGoogle Scholar
  25. Röcker C, Pötzl M, Zhang F, Parak WJ, Nienhaus GU (2009) A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol 4:577–580CrossRefPubMedADSGoogle Scholar
  26. San Juan J, No ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4:415–419CrossRefPubMedGoogle Scholar
  27. Shaw GA, Crone W (2004) Direct measurement of the nanoscale mechanical properties of NiTi shape memory alloy. Mater Res Soc Symp Proc 791:Q7.11.1–Q7.11.6Google Scholar
  28. Sheetz MP, Felsenfeld DP, Galbraith CG (1998) Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends Cell Biol 8:51–54CrossRefPubMedGoogle Scholar
  29. Spatz J (2004) Cell-nanostructure interactions. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology: concepts, applications and perspectives, 1st edn. Wiley-VCH, Weinheim, pp 53–56Google Scholar
  30. Tang W, Sundmann B, Sandström R, Quiu C (1999) New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater 50:3457–3468CrossRefGoogle Scholar
  31. Valiev RZ, Gunderov DV, Pushin VG (2005) Metastable nanostructured SPD Ti-Ni alloys with unique properties. J Metastable Nanocryst Mater 24–25:7–12CrossRefGoogle Scholar
  32. Volpe P, Eremenko-Volpe T (1970) Quantitative studies on cell proteins in suspension cultures. Eur J Biochem 12:195–200CrossRefPubMedGoogle Scholar
  33. Waitz T, Karnthaler HP (2004) Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix. Acta Mater 52:5461–5469CrossRefGoogle Scholar
  34. Waitz T, Kazykhanov V, Karnthaler HP (2004) Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater 52:137–147CrossRefGoogle Scholar
  35. Waitz T, Spisak D, Hafner J, Karnthaler HP (2005) Size-dependent martensitic transformation Path causing atomic-scale twinnig of nanocrystalline NiTi shape memory alloys. Europhys Lett 71:98–103CrossRefADSGoogle Scholar
  36. Wu MH, Mu R, Ueda A, Henderson DO (2003) Production of III–V nanocrystals by picosecond pulsed laser ablation. In: Materials Research Society symposium proceedings, vol 780Google Scholar
  37. Yamamoto A, Honma R, Sumita M (1998) Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 39:331–340CrossRefPubMedGoogle Scholar
  38. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials 25:2695–2711CrossRefPubMedGoogle Scholar
  39. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Stephan Barcikowski
    • 1
  • Anne Hahn
    • 1
  • Merlin Guggenheim
    • 2
  • Kerstin Reimers
    • 2
  • Andreas Ostendorf
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.Department of Plastic, Hand and Reconstructive SurgeryMedical School HannoverHannoverGermany

Personalised recommendations