Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1263–1273 | Cite as

Influence of synthesis method on structural and magnetic properties of cobalt ferrite nanoparticles

  • Sašo Gyergyek
  • Darko Makovec
  • Alojz Kodre
  • Iztok Arčon
  • Marko Jagodič
  • Miha Drofenik
Research Paper

Abstract

The Co–ferrite nanoparticles having a relatively uniform size distribution around 8 nm were synthesized by three different methods. A simple co-precipitation from aqueous solutions and a co-precipitation in an environment of microemulsions are low temperature methods (50 °C), whereas a thermal decomposition of organo-metallic complexes was performed at elevated temperature of 290 °C. The X-ray diffractometry (XRD) showed spinel structure, and the high-resolution transmission electron microscopy (HRTEM) a good crystallinity of all the nanoparticles. Energy-dispersive X-ray spectroscopy (EDS) showed the composition close to stoichiometric (~CoFe2O4) for both co-precipitated nanoparticles, whereas the nanoparticles prepared by the thermal decomposition were Co-deficient (~Co0.6Fe2.4O4). The X-ray absorption near-edge structure (XANES) analysis showed Co valence of 2+ in all the samples, Fe valence 3+ in both co-precipitated samples, but average Fe valence of 2.7+ in the sample synthesized by thermal decomposition. The variations in cation distribution within the spinel lattice were observed by structural refinement of X-ray absorption fine structure (EXAFS). Like the bulk CoFe2O4, the nanoparticles synthesized at elevated temperature using thermal decomposition displayed inverse spinel structure with the Co ions occupying predominantly octahedral lattice sites, whereas co-precipitated samples showed considerable proportion of cobalt ions occupying tetrahedral sites (nearly 1/3 for the nanoparticles synthesized by co-precipitation from aqueous solutions and almost 1/4 for the nanoparticles synthesized in microemulsions). Magnetic measurements performed at room temperature and at 10 K were in good agreement with the nanoparticles’ composition and the cation distribution in their structure. The presented study clearly shows that the distribution of the cations within the spinel lattice of the ferrite nanoparticles, and consequently their magnetic properties are strongly affected by the synthesis method used.

Keywords

Nanoparticles Spinel ferrite Structure Synthesis EXAFS 

Notes

Acknowledgments

This work was supported by the Slovenian Research Agency, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia within the National Research Program, and by DESY and the European Community under Contract RII3-CT-2004-506008 (IA-SFS). Provision of synchrotron radiation facilities by HASYLAB is acknowledged. The authors would also like to thank Daša Lesjak for help with the synthesis of the nanoparticles, E. Welter of HASYLAB for expert advice on beamline operation and Paul McGuiness for performing VSM measurements.

Supplementary material

11051_2009_9833_MOESM1_ESM.pdf (75 kb)
Supplementary material 1 (PDF 74 kb)
11051_2009_9833_MOESM2_ESM.pdf (40 kb)
Supplementary material 2 (PDF 40 kb)
11051_2009_9833_MOESM3_ESM.pdf (11 kb)
Supplementary material 3 (PDF 11 kb)
11051_2009_9833_MOESM4_ESM.pdf (32 kb)
Supplementary material 4 (PDF 31 kb)

References

  1. Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Chartier dit Moulin C, Brice S, Sainctavit P (2004) Influence of the synthesis parameters on the cation distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345&346:658–662CrossRefGoogle Scholar
  2. Arčon I, Kolar J, Kodre A, Hanžel D, Strlič M (2007) XANES analysis of Fe valence in iron gall inks. X-ray spectrom 36:199–205CrossRefGoogle Scholar
  3. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32CrossRefGoogle Scholar
  4. Batlle X, Labarta A (2002) Finite-size effect in fine particles: magnetic and transport properties. J Phys D 35:R15–R42CrossRefADSGoogle Scholar
  5. Calvin S, Carpenter EE, Ravel B, Harris VG, Morrison SA (2002) Multiedge refinement of extended X-ray absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B66:224405-1–224405-13Google Scholar
  6. Carpenter EE, O’Connor CJ, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177CrossRefADSGoogle Scholar
  7. Cullity BD (1987) Elements of X-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  8. Elster A, Burdette J (2001) Questions and answers in magnetic resonance imaging. Mosby, St. LouisGoogle Scholar
  9. Fontjin WFJ, van der Zaag PJ, Feiner LF, Metselaar R, Devillers MAC (1999) A consistent interpretation of the magneto-optical spectra of spinel type ferrites (invited). J Appl Phys 85:5100–5105CrossRefADSGoogle Scholar
  10. Franco A, Zapf V (2008) Temperature dependence of magnetic anisotropy in nanoparticles of CoxFe(3-x)O4. J Magn Magn Mater 320:709–713CrossRefADSGoogle Scholar
  11. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRefPubMedGoogle Scholar
  12. Häfeli U, Schüt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carriers. Plenum, New YorkGoogle Scholar
  13. Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca GJ (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857CrossRefADSGoogle Scholar
  14. Jeyadevan B, Tohji T, Nakatsuka KJ (1994) Structure-analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine-structure. Appl Phys 76:6325–6327CrossRefGoogle Scholar
  15. Kamiyama T, Haneda K, Sato T, Ikeda S, Asano H (1992) Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun 81:563–566CrossRefADSGoogle Scholar
  16. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRefADSGoogle Scholar
  17. Li S, John VT, O’Connor, Harris VG, Carpenter E (2000) Cobalt ferrite nanoparticles: Structure, cation distributions and magnetic properties. J Appl Phys 87:6223–6225CrossRefADSGoogle Scholar
  18. Makovec D, Drofenik M (2008) Non-stoichiometric zinc–ferrite spinel nanoparticles. J Nanopart Res 10:131–141CrossRefGoogle Scholar
  19. Makovec D, Košak A, Drofenik M (2004) The preparation of MnZn–ferrite nanoparticles in water-CTAB-hexanol microemulsions. Nanotechnology 15:S160–S166CrossRefADSGoogle Scholar
  20. Makovec D, Kodre A, Arčon I, Drofenik M (2009) Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11:1145–1158CrossRefGoogle Scholar
  21. Morrison SA, Cahill CL, Carpenter EE, Calvin S, Swaminathan R, McHenry ME, Harris VG (2004) Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature. J Appl Phys 95:6392–6395CrossRefADSGoogle Scholar
  22. Mosbach K, Schröder U (1979) Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett 102:112–116CrossRefPubMedGoogle Scholar
  23. Pankhurst QA, Conolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefADSGoogle Scholar
  24. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale synthesis of monodispersed nanocrystals. Nature Mater 3:891–895CrossRefADSGoogle Scholar
  25. Pelton AD, Schmalzried H, Sticher J (1979) Thermodynamics of Mn3O4–Co3O4, Fe3O4–Mn3O4, and Fe3O4–Co3O4 spinels by phase-diagram analysis. Ber Bunsen-Ges Phys Chem 83:241–252Google Scholar
  26. Pileni MP (1993) Reverse miceles as microreactors. J Phys Chem 97:6961–6973CrossRefGoogle Scholar
  27. Ravel B, Newville M (2005) ATENA, ARTHEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefPubMedGoogle Scholar
  28. Rosenweig R (1932) Ferrohydrodynamics. Cambridge University Press, CambridgeGoogle Scholar
  29. Salazar-Alvarez G, Olsson RT, Sort J, Macedo AA, Ardisson JD, Baró MD, Gedde UW, Nogués J (2007) Enhanced coercivity in Co-rich near-stoichiometric CoxFe3-xO4+δ nanoparticles prepared in large batches. Chem Mater 19:4957–4963CrossRefGoogle Scholar
  30. Sato T, Haneda K, Seki M, Iijima T (1990) Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl Phys A50:13–16ADSGoogle Scholar
  31. Senyei A, Widder K, Czerlinski C (1978) Magnetic guidance of drug-carrying microspheres. J Appl Phys 49:3578–3583CrossRefADSGoogle Scholar
  32. Sivakumar N, Narayanasamy A, Shinoda K, Chinnasamy CN, Jeyadevan B, Greneche JM (2007) Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. J Appl Phys 102:013916 1-8Google Scholar
  33. Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven, The NetherlandsGoogle Scholar
  34. Sugimoto T (2001) Monodispersed particles. Elsevier science, AmsterdamGoogle Scholar
  35. Sun S, Zeng H, Robinson DB, Raux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279CrossRefPubMedGoogle Scholar
  36. Tirosh E, Shemer G, Markovich G (2006) Optimizing cobalt ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18:465–470CrossRefGoogle Scholar
  37. Veverka M, Veverka P, Kaman O, Lancok A, Zaveta K, Pollert E, Knizek K, Bohacek J, Benes M, Kaspar P, Duguet E, Vasseur S (2007) Magnetic heating by cobalt ferrite nanoparticles. Nanotechnology 18:345704 1-7Google Scholar
  38. Widder KJ, Senyei AE, Scrapelli DG (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Bio Exp Biol Med 58:141–146Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sašo Gyergyek
    • 1
  • Darko Makovec
    • 1
  • Alojz Kodre
    • 1
    • 2
  • Iztok Arčon
    • 1
    • 3
  • Marko Jagodič
    • 4
  • Miha Drofenik
    • 1
    • 5
  1. 1.“Jozef Stefan” InstituteLjubljanaSlovenia
  2. 2.Faculty of Mathematics and PhysicsUniversity of LjubljanaLjubljanaSlovenia
  3. 3.University of Nova GoricaNova GoricaSlovenia
  4. 4.Institute of Mathematics, Physics and MechanicsLjubljanaSlovenia
  5. 5.Faculty of Chemistry and Chemical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations