Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1249–1262 | Cite as

The morphology of mass selected ruthenium nanoparticles from a magnetron-sputter gas-aggregation source

  • R. M. Nielsen
  • S. Murphy
  • C. Strebel
  • M. Johansson
  • I. Chorkendorff
  • J. H. NielsenEmail author
Research Paper


We have investigated the morphology of mass selected ruthenium nanoparticles produced with a magnetron-sputter gas-aggregation source. The nanoparticles are mass selected using a quadrupole mass filter, resulting in narrow size distributions and average diameters between 2 and 15 nm. The particles are imaged in situ by scanning electron microscopy and scanning tunneling microscopy (STM) as well as ex-situ using transmission electron microscopy (TEM). For each distribution of mass selected nanoparticles, the height determined by STM and the width determined by TEM are seen to be similar throughout the mass range investigated. The particles are found to have a well-defined morphology for diameters below approximately 6 nm. Larger nanoparticles are less well-defined having rough surfaces, unlike the equilibrium morphology determined from the Wulff construction. The morphology of the particles is, in general, believed to be determined by the conditions inside the gas-aggregation source and the morphology is retained as the particles are soft-landed on the substrate.


HOPG Magnetron-sputter gas-aggregation source Mass selected nanoparticles Nanoparticle morphology Scanning tunneling microscopy Synthesis and characterization Transmission electron microscopy Ruthenium 



This study was supported by the Danish National Research Foundation and the EU FWP7 Marie Curie Intra-European Fellowship ESRCN (PIEF-GA-2008- 220055). The use of facilities at the Center of Electron Nanoscopy (CEN) at DTU is acknowledged.


  1. Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. J Catal 255:6–19CrossRefGoogle Scholar
  2. Bielawa H, Hinrichsen O, Birkner A, Muhler M (2001) The ammonia-synthesis catalyst of the next generation: barium-promoted oxide-supported ruthenium. Angew Chem Int Ed 40:1061–1063CrossRefGoogle Scholar
  3. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44:1–49CrossRefADSGoogle Scholar
  4. Carroll SJ, Hall SG, Palmer RE, Smith R (1998) Energetic impact of size-selected metal cluster ions on graphite. Phys Rev Lett 81:3715–3718CrossRefADSGoogle Scholar
  5. Claeyssens F, Pratontep S, Xirouchaki C, Palmer RE (2006) Immobilization of large size-selected silver clusters on graphite. Nanotechnology 17:805–807CrossRefADSGoogle Scholar
  6. Croy JR, Mostafa S, Liu J, Sohn Y-H, Cuenya BR (2007) Size dependent study of MeOH decomposition over size-selected Pt nanoparticles synthesized via micelle encapsulation. Catal Lett 118:1–7CrossRefGoogle Scholar
  7. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Törnqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814–1817CrossRefADSGoogle Scholar
  8. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Frøseth V, Holmen A, de Jong KP (2009) On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. J Am Chem Soc 131:7197–7203CrossRefGoogle Scholar
  9. Dujardin G, Mayne A, Comtet G, Hellner L, Jamet M, Le Goff E, Millet P (1996) New model of the initial stages of Si(111)-(7x7) oxidation. Phys Rev Lett 76:3782–3785CrossRefPubMedADSGoogle Scholar
  10. Frank M, Bäumer M (2000) From atoms to crystallites: adsorption on oxide-supported metal particles. Phys Chem Chem Phys 2:3723–3737CrossRefGoogle Scholar
  11. Gavnholt J (2009) The structure of individual nanoparticles and hot electron assisted chemistry at surfaces. Dissertation, Technical University of DenmarkGoogle Scholar
  12. Gavnholt J, Schiøtz J (2008) Structure and reactivity of ruthenium nanoparticles. Phys Rev B 77:035404-1-035404-10Google Scholar
  13. Geng D, LuG (2007) Size effect of gold nanoparticles on the electrocatalytic oxidation of carbon monoxide in alkaline solution. J Nanopart Res 9:1145–1151CrossRefGoogle Scholar
  14. Granqvist CG, Buhrman RA (1976) Ultrafine metal particles. J Appl Phys 47:2200–2219CrossRefADSGoogle Scholar
  15. Grunwaldt J-D, Molenbroek AM, Topsøe N-Y, Topsøe H, Clausen BS (2000) In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194:452–460CrossRefGoogle Scholar
  16. Guise OL, Ahner JW, Jung MC, Goughnour PC, Yates JT (2002) Reproducible electrochemical etching of tungsten probe tips. Nano Lett 2:191–193CrossRefADSGoogle Scholar
  17. Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin-films from energetic cluster impact—a feasibility study. J Vac Sci Technol A 10:3266–3271CrossRefADSGoogle Scholar
  18. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis—Calculations and concepts. Adv Catal 45:71–129CrossRefGoogle Scholar
  19. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsøe H (2002) Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295:2053–2255CrossRefPubMedADSGoogle Scholar
  20. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 115:301–309CrossRefGoogle Scholar
  21. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRefPubMedGoogle Scholar
  22. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307:555–558CrossRefPubMedADSGoogle Scholar
  23. Hovel H, Barke I (2006) Morphology and electronic structure of gold clusters on graphite: Scanning-tunneling techniques and photoemission. Prog Surf Sci 81:53–111CrossRefADSGoogle Scholar
  24. Jacobsen CJH, Dahl S, Hansen PL, Törnqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) Structure sensitivity of supported ruthenium catalysts for ammonia synthesis. J Mol Catal A Chem 163:19–26CrossRefGoogle Scholar
  25. Janssens TVW, Clausen BS, Hvolbæk B, Falsig H, Christiensen CH, Bligaard T, Nørskov JK (2007) Insights into the reactivity of supported Au nanoparticles: combining theory and experiment. Top Catal 44:15–26CrossRefGoogle Scholar
  26. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Nørskov JK (2008) First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. J Catal 259:147–160CrossRefGoogle Scholar
  27. Kadossov E, Funk S, Burghaus U (2008) CO adsorption of FeOx nanoclusters supported on HOPG—effect of oxide formation on catalytic activity. Catal Lett 120:179–183CrossRefGoogle Scholar
  28. Kibsgaard J, Lauritsen JV, Lægsgaard E, Clausen BS, Topsøe H, Besenbacher F (2006) Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. J Am Chem Soc 128:13950–13958CrossRefPubMedGoogle Scholar
  29. King DL (1978) Fischer-Tropsch study of supported ruthenium catalysts. J Catal 51:386–397CrossRefGoogle Scholar
  30. Klipp B, Grass M, Müller J, Stolcic D, Lutz U, Ganteför G, Boneberg J, Leiderer P (2001) Deposition of mass-selected cluster ions using a pulsed arc cluster-ion source. Appl Phys A 73:547–554CrossRefADSGoogle Scholar
  31. Kung MC, Davis RJ, Kung HH (2007) Understanding Au-catalyzed low-temperature CO oxidation. J Phys Chem C 111:11767–11775CrossRefGoogle Scholar
  32. Landman U, Yoon B, Zhang C, Heiz U, Arenz M (2007) Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Top Catal 44:145–158CrossRefGoogle Scholar
  33. Luna NB, Bonetto FJ, Vidal RA, Goldberg EC, Ferrn J (2008) Low energy ion scattering in He/HOPG system. J Mol Catal A 281:237–240CrossRefGoogle Scholar
  34. Madey TE, Engelhardt HA, Menzel D (1975) Adsorption of oxygen and oxidation of CO on the ruthenium (001) surface. Surf Sci 48:304–328CrossRefADSGoogle Scholar
  35. Moseler M, Häkkinen H, Landman U (2002) Supported magnetic nanoclusters: soft landing of Pd clusters on a MgO surface. Phys Rev Lett 89:176103-1–176103-4Google Scholar
  36. Nakamura Y, Mera Y, Maeda K (1999) A reproducible method to fabricate atomically sharp tips for scanning tunneling microscopy. Rev Sci Instrum 70:3373–3376CrossRefADSGoogle Scholar
  37. Nørskov JK, Bligaard T, Hvolbæk B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37:2163–2171CrossRefPubMedGoogle Scholar
  38. Paul W, Reinhard HP, Vonzahn U (1958) Das elektrische massenfilter als massenspektrometer und isotopentrenner. Z für Phys 152:143–182CrossRefADSGoogle Scholar
  39. Pratontep S, Carroll SJ, Xirouchaki C, Streun M, Palmer RE (2005) Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev Sci Instrum 76:1–8CrossRefGoogle Scholar
  40. Rodriguez-reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175CrossRefGoogle Scholar
  41. Rohmer M, Ghaleh F, Aeschlimann M, Bauer M, Hövel H (2007) Mapping the femtosecond dynamics of supported clusters with nanometer resolution. Eur Phys J D 45:491–499CrossRefADSGoogle Scholar
  42. Sanchez A, Abbet S, Heiz U, Scheider WD, Häkkinen H, Barnett RN, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578CrossRefGoogle Scholar
  43. Shincho E, Egawa C, Naito S, Tamaru K (1985) The behavior of CO adsorbed on Ru (1, 1, 10) and Ru(001)—the dissociation of CO at the step sites of the Ru(1, 1, 10) surface. Surf Sci 149:1–16CrossRefADSGoogle Scholar
  44. Silvestre-Albero J, Rupprechter G, Freund H-J (2006) Atmospheric pressure studies of selective 1, 3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: effect of Pd particle size. J Catal 240:58–65CrossRefGoogle Scholar
  45. Song Z, Cai T, Hanson JC, Rodriguez JA, Hrbek J (2004) Ru nanoclusters prepared by Ru3(CO)12 deposition on Au(111). J Am Chem Soc 126:8576–8584CrossRefPubMedGoogle Scholar
  46. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRefPubMedADSGoogle Scholar
  47. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650CrossRefPubMedADSGoogle Scholar
  48. Wörz AS, Judai K, Abbet S, Heiz U (2003) Cluster size-dependent mechanisms of the CO + NO reaction on small Pd-n (n ≤ 30) clusters on oxide surfaces. J Am Chem Soc 125:7964–7970CrossRefPubMedGoogle Scholar
  49. Yao Y, Fu Q, Zhang Z, Zhang H, Ma T, Tan D, Bao X (2008) Structure control of Pt–Sn bimetallic catalyst supported on highly oriented pyrolytic graphite (HOPG). Appl Surf Sci 254:3808–3812CrossRefADSGoogle Scholar
  50. Yim W-L, Nowitzki T, Necke M, Schnars H, Nickut P, Biener J, Biener MM, Zielasek V, Al-Shamery K, Klüver T, Bäumer M (2007) Universal phenomena of CO adsorption on gold surfaces with low-coordinated sites. J Phys Chem C 111:445–451CrossRefGoogle Scholar
  51. Zanella R, Giorgio S, Shin C-H, Henry CR, Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported in TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222:357–367CrossRefGoogle Scholar
  52. Zhang G, Yang D, Sacher E (2007) Structure and morphology of Co nanoparticles deposited onto highly oriented pyrolytic graphite. J Phys Chem 111:17200–17205Google Scholar
  53. Zhang H, Fu Q, Yao Y, Zhang Z, Ma T, Tan D, Bao X (2008) Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite. Langmuir 24:10874–10878CrossRefPubMedGoogle Scholar
  54. Zubkov T, Morgan GA, Yates JT Jr (2002) Spectroscopic detection of CO dissociation on defect sites on Ru(109): implications for Fischer-Tropsch catalytic chemistry. Chem Phys Lett 362:181–184CrossRefADSGoogle Scholar
  55. Zubkov T, Morgan GA, Yates JT, Kühlert O, Lisowsk M, Schillinger R, Fick D, Jänsch HJ (2003) The effect of atomic steps on adsorption and desorption of CO on Ru(109). Surf Sci 526:57–71CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • R. M. Nielsen
    • 1
  • S. Murphy
    • 1
  • C. Strebel
    • 1
  • M. Johansson
    • 1
  • I. Chorkendorff
    • 1
  • J. H. Nielsen
    • 1
    Email author
  1. 1.Center for Individual Nanoparticle Functionality, Department of Physics, Nano-DTUTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations