Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 7, pp 2579–2588 | Cite as

Chemical vapor synthesis of fluorine-doped SnO2 (FTO) nanoparticles

  • Jens SuffnerEmail author
  • Péter Ágoston
  • Jens Kling
  • Horst Hahn
Research Paper

Abstract

The synthesis and properties of nanocrystalline SnO2 particles and the effects of doping with fluorine are reported in this work. Simultaneous thermal decomposition of tetramethyltin and difluoromethane in the chemical vapor synthesis process was employed. The nanoparticles were analyzed with respect to their structure using X-ray diffraction followed by Rietveld refinement, transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectroscopy, and Fourier-transformed infrared spectroscopy. Based on the experimental results, a point defect model is proposed, which is supported by density functional theory calculations. At low fluorine concentrations, fluorine substitutes oxygen on a lattice site, while fluorine is located interstitially at high concentrations. The formation of an associated fluorine substitutional–interstitial pair is observed instead of isolated interstitial fluorine.

Keywords

Vapor phase synthesis Tin oxide Transparent conducting oxides (TCO) Density functional theory (DFT) Point defects 

Notes

Acknowledgments

The authors gratefully acknowledge the help with the photoelectron spectra measured by Erich Golusda (Surface Science Division, Technische Universität Darmstadt). Helpful discussions with Christoph Körber and Andreas Klein (Surface Science Division, Technische Universität Darmstadt) are gratefully acknowledged. The authors thank the State of Hesse for the financial support for a major equipment grant. Financial support by the Deutsche Forschungsgemeinschaft (DFG) through individual grants and through the Center for Functional Nanostructures (CFN) is gratefully acknowledged.

References

  1. Arefi-Khonsari F, Bauduin N, Donsanti F, Amouroux J (2003) Deposition of transparent conductive tin oxide thin films doped with fluorine by PACVD. Thin Solid Films 427:208–214CrossRefADSGoogle Scholar
  2. Ayyub P, Palkar VR, Chattopadhyay S, Multani M (1995) Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 51:6135–6138CrossRefADSGoogle Scholar
  3. Bae JW, Lee SW, Yeom GY (2007) Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD. J Electrochem Soc 154:D34–D37CrossRefGoogle Scholar
  4. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefADSGoogle Scholar
  5. Brehm JU, Winterer M, Hahn H (2006) Synthesis and local structure of doped nanocrystalline zinc oxides. J Appl Phys 100:064311CrossRefADSGoogle Scholar
  6. Bruneaux J, Cachet H, Fromment M, Messad A (1991) Correlation between structural and electrical-properties of sprayed tin oxide-films with and without fluorine doping. Thin Solid Films 197:129–142CrossRefADSGoogle Scholar
  7. Canestraro CD, Oliveira MM, Valaski R, da Silva MVS, David DGF, Pepe I, da Silva AF, Roman LS, Persson C (2008) Strong inter-conduction-band absorption in heavily fluorine doped tin oxide. Appl Surf Sci 255:1874–1879CrossRefADSGoogle Scholar
  8. Canestraro CD, Roman LS, Persson C (2009) Polarization dependence of the optical response in SnO2 and the effects from heavily F doping. Thin Solid Films 517:6301–6304CrossRefGoogle Scholar
  9. Ceperley DM, Alder B-J (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRefADSGoogle Scholar
  10. Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46CrossRefADSGoogle Scholar
  11. Dawar AL, Joshi JC (1984) Semiconducting transparent thin films: their properties and applications. J Mater Sci 19:1–23CrossRefADSGoogle Scholar
  12. Ensling D, Thißen A, Gassenbauer Y, Klein A, Jaegermann W (2005) In situ preparation and analysis of functional oxides. Adv Eng Mater 7:945–949CrossRefGoogle Scholar
  13. Erhart P, Klein A, Albe K (2005) Phys Rev B 72:085213CrossRefADSGoogle Scholar
  14. Esteves MC, Gouvêa D, Sumodjo PTA (2004) Effect of fluorine doping on the properties of tin dioxide based powders prepared via Pechini’s method. Appl Surf Sci 229:24–29CrossRefADSGoogle Scholar
  15. Fantini M, Torriani I (1986) The compositional and structural properties of sprayed SnO2:F thin films. Thin Solid Films 138:255–265CrossRefADSGoogle Scholar
  16. Ferrón J, Arce R (1991) Anomalous incorporation of fluorine in tin oxide films produced with the pyrosol method. Thin Solid Films 204:405–411CrossRefADSGoogle Scholar
  17. Gamard A, Jousseaume B, Toupance T, Campet G (1999) New fluorinated stannic compounds as precursors of F-doped SnO2 materials prepared by the sol–gel route. Inorg Chem 38:4671–4679CrossRefPubMedGoogle Scholar
  18. Hall DL, Wang AA, Joy KT, Miller TA, Woolridge MS (2004) Combustion synthesis and characterization of nanocrystalline tin and tin oxide (SnOx, x = 0–2) particles. J Am Ceram Soc 87:2033–2041CrossRefGoogle Scholar
  19. Han C-H, Han S-D, Gwak J, Khatkar SP (2007) Synthesis of indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) nano-powder by sol–gel combustion hybrid method. Mater Lett 61:1701–1703CrossRefGoogle Scholar
  20. Hartnagel HL, Dawar AL, Jain AK, Jagadish C (1995) Semiconducting transparent thin films. Institute of Physics Publishing, Bristol, UKGoogle Scholar
  21. Jin W, Lee I-K, Kompch A, Dörfler U, Winterer M (2007) Chemical vapor synthesis and characterization of chromium doped zinc oxide nanoparticles. J Eur Ceram Soc 27:4333–4337CrossRefGoogle Scholar
  22. Jung D-W, Park D-W (2009) Synthesis of nano-sized antimony-doped tin oxide (ATO) particles using a DC arc plasma jet. Appl Surf Sci 255:5409–5413CrossRefADSGoogle Scholar
  23. Kim H, Auyeung RCY, Pique A (2008) Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 516:5052–5056CrossRefADSGoogle Scholar
  24. Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefADSGoogle Scholar
  25. Kresse G, Furthmüller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefADSGoogle Scholar
  27. Leenen MAM, Arning V, Thiem H, Steiger J, Anselm R (2009) Printable electronics: flexibility for the future. Phys Status Solidi A 206:588–597CrossRefADSGoogle Scholar
  28. Martel A, Caballero-Briones F, Fandino J, Castro-Rodriguez R, Bartolo-Perez P, Zapato-Navarro A, Zapato-Torres M, Pena JL (1999) Discharge diagnosis and controlled deposition of SnOx: F films by DC-reactive sputtering from a metallic target. Surf Coat Technol 122:136–142CrossRefGoogle Scholar
  29. Maruyama T, Akagi H (1996) Fluorine-doped tin dioxide thin films prepared by radio-frequency magnetron sputtering. J Electrochem Soc 143:283–287CrossRefGoogle Scholar
  30. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefMathSciNetADSGoogle Scholar
  31. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden Prairie, MNGoogle Scholar
  32. Patil PS (1999) Versatility of chemical spray pyrolysis technique. Mater Chem Phys 59:185–198CrossRefMathSciNetGoogle Scholar
  33. Proscia J, Gordon RG (1992) Properties of fluorite-doped tin oxide-films produced by atmospheric pressure chemical vapour deposition from tetremethyltin, bromotrifluoromethane and oxygen. Thin Solid Films 214:175–187CrossRefADSGoogle Scholar
  34. Saxena AK, Thangaraj R, Singh SP, Agnihotri (1985) Characterization of fluorine-doped SnO2 films prepared by chemical vapour deposition. Thin Solid Films 131:121–130CrossRefADSGoogle Scholar
  35. Schallehn M, Winterer M, Weirich TE, Keiderling U, Hahn H (2003) In situ preparation of polymer-coated alumina nanopowders by chemical vapor synthesis. Chem Vap Depos 9:40–44CrossRefGoogle Scholar
  36. Srdic VV, Winterer M, Hahn H (2000) Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J Am Ceram Soc 83:1853–1860CrossRefGoogle Scholar
  37. Suffner J, Schechner G, Sieger H, Hahn H (2007) In situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Depos 13:459–464CrossRefGoogle Scholar
  38. Szczuko D, Werner D, Oswald S, Behr G, Wetzig K (2001) XPS investigations of surface segregation of doping elements in SnO2. Appl Surf Sci 179:301–306CrossRefADSGoogle Scholar
  39. Thangaraju B (2002) Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films 402:71–78CrossRefADSGoogle Scholar
  40. Winterer M (2002) Nanocrystalline ceramics. Springer, Berlin, GermanyGoogle Scholar
  41. Zhang J, Gao L (2004) Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J Solid State Chem 177:1425–1430CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jens Suffner
    • 1
    • 2
    Email author
  • Péter Ágoston
    • 3
  • Jens Kling
    • 4
  • Horst Hahn
    • 1
    • 2
  1. 1.Joint Research Laboratory NanomaterialsTechnische Universität Darmstadt and Karlsruhe Institute of TechnologyDarmstadtGermany
  2. 2.Institute of NanotechnologyKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  3. 3.Materials Modelling Division, Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Structural Research Division, Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations