Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 7, pp 2445–2456 | Cite as

Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst

  • Shenmin ZhuEmail author
  • Di Zhang
  • Zhixin Chen
  • Gang Zhou
  • Haibo Jiang
  • Jinlong Li
Research Paper

Abstract

Titanium oxides (TiO2) with hierarchical structures have been successfully replicated from biotemplate using a sonochemical method. The bio-templates, cedarwoods, were irradiated under ultrasonic waves in TiCl4 solutions and then calcined at temperatures between 450 and 600 °C. The fine replications of the biotemplates in TiO2 down to nanometer’s level were verified using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The photocatalytic activities were assessed by measuring the percentage degradation of methylene blue using UV–vis spectroscopy. The calcination temperature has a strong effect on the structural replication and photocatalytic activity of the replicas. It appears that the calcination temperature of 450 °C results in the best structural replication with the highest surface area of 54.8 m2 g−1, and thus has the best photocatalytic properties. This method provides a simple, efficient, and versatile technique for fabricating TiO2 with hierarchical structures, and it has the potential to be applied to other systems for producing functional hierarchical materials for chemical sensor and nanodevices.

Keywords

Sonochemistry Titania Hierarchical structures Photocatalyst Porous nanomaterial Nanomanufacturing 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of this research by the National Science Foundation of China (No. 50573013, 50772067), Program for New Century Excellent Talents in University, Shanghai Science and Technology Committee (06PJ14063, 07DJ14001), and Sino-French Project of MOST of China (No. 2009DFA52410). We also thank SJTU Instrument Analysis Center for the measurements.

Supplementary material

11051_2009_9807_MOESM1_ESM.doc (490 kb)
Supplementary material 1 (DOC 489 kb)

References

  1. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3-/I-shuttle redox mediator. Chem Phys Lett 344:339–344CrossRefADSGoogle Scholar
  2. Antonelli DM (1999) Synthesis of phosphorus-free mesoporous titania via templating with amine surfactants. Microporous Mesoporous Mater 30:315–319CrossRefGoogle Scholar
  3. Bessekhouad Y, Robert D, Weber JV, Chaoui N (2004) Effect of alkaline-doped TiO2 on photocatalytic efficiency. J Photochem Photobiol A 167:49–57CrossRefGoogle Scholar
  4. Blin JL, Leonard A, Yuan ZY, Gigot L, Vantomme A, Cheetham AK, Su BL (2003) Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angew Chem Int Ed 42:2872–2875CrossRefGoogle Scholar
  5. Breulmann M, Davis SA, Mann S, Hentze HP, Antonietti M (2000) Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. Adv Mater 12:502–507CrossRefGoogle Scholar
  6. Cao J, Rusina O, Sieber H (2004) Processing of porous TiO2-ceramics from biological preforms. Ceram Int 30:1971–1974CrossRefGoogle Scholar
  7. Carn F, Achard MF, Babot O, Deleuze H, Reculusa S, Backov R (2005) Syntheses and characterization of highly mesoporous crystalline TiO2 macrocellular foams. J Mater Chem 15:3887–3895CrossRefGoogle Scholar
  8. Caruso RA, Giersig M, Willig F, Antonietti M (1998) Porous “coral-like” TiO2 structures produced by templating polymer gels. Langmuir 14:6333–6336CrossRefGoogle Scholar
  9. Davis SA, Burkett SL, Mendelson NH, Mann S (1997) Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385:420–423CrossRefADSGoogle Scholar
  10. Deng WH, Toepke MW, Shanks BH (2003) Surfactant-assisted synthesis of alumina with hierarchical nanopores. Adv Funct Mater 13:61–65CrossRefGoogle Scholar
  11. Dong AG, Wang YJ, Tang Y, Ren N, Zhang YH, Yue JH, Gao Z (2002) Zeolitic tissue through wood cell templating. Adv Mater 14:926–929CrossRefGoogle Scholar
  12. Fowler CE, Shenton W, Stubbs G, Mann S (2001) Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv Mater 13:1266–1269CrossRefGoogle Scholar
  13. Gould SJ, Ju SC (1989) The biosynthesis of acivicin and 4-hydroxyacivicin from N-delta-hydroxyornithine. J Am Chem Soc 111:2329–2331CrossRefGoogle Scholar
  14. Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater 11:795–805CrossRefGoogle Scholar
  15. Hua ZL, Shi JL, Zhang LX, Ruan ML, Yan JN (2002) Formation of nanosized TiO2 in mesoporous silica thin films. Adv Mater 14:830–833CrossRefGoogle Scholar
  16. Huang JG, Kunitake T (2003) Nano-precision replication of natural cellulosic substances by metal oxides. J Am Chem Soc 125:11834–11835CrossRefPubMedGoogle Scholar
  17. Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951CrossRefADSGoogle Scholar
  18. Karches M, Morstein M, von Rohr P, Pozzo RL, Giombi JL, Baltanas MA (2002) Plasma-CVD-coated glass beads as photocatalyst for water decontamination. Catal Today 72:267–279CrossRefGoogle Scholar
  19. Lee SW, Lee SK, Belcher AM (2003) Virus-based alignment of inorganic, organic, and biological nanosized materials. Adv Mater 15:689–692CrossRefGoogle Scholar
  20. Lin J, Yu JC, Lo D, Lam SK (1999) Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions. J Catal 183:368–372CrossRefGoogle Scholar
  21. Lu MC, Roam GD, Chen JN, Huang CP (1994) Photocatalytic oxidation of dichlorvos in the presence of hydrogen-peroxide and ferrous ion. Water Sci Technol 30:29–38Google Scholar
  22. Luo HM, Takata T, Lee YG, Zhao JF, Domen K, Yan YS (2004) Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem Mater 16:846–849CrossRefGoogle Scholar
  23. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A 244:383–391CrossRefGoogle Scholar
  24. Ota T, Imaeda M, Takase H, Kobayashi M, Kinoshita N, Hirashita T, Miyazaki H, Hikichi Y (2000) Porous titania ceramic prepared by mimicking silicified wood. J Am Ceram Soc 83:1521–1523CrossRefGoogle Scholar
  25. Patel M, Padhi BK (1997) A study of alumina particulates using cellulosic substrates. J Sci Ind Res 56:91–94Google Scholar
  26. Paz Y, Heller A (1997) Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: the deleterious effect of sodium contamination and its prevention. J Mater Res 12:2759–2766CrossRefADSGoogle Scholar
  27. Pinnavaia TJ, Tanev PT, Wang JL, Zhang WZ (1995) Ti-substituted mesoporous molecular sieves for catalytic oxidation of large aromatic compounds prepared by neutral templating route. Adv Porous Mater 371:53–62Google Scholar
  28. Rhodes KH, Davis SA, Caruso F, Zhang B, Mann S (2000) Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core–shell building blocks. Chem Mater 12:2832–2834CrossRefGoogle Scholar
  29. Shan Z, Gianotti E, Jansen JC, Peters JA, Marchese L, Maschmeyer T (2001) One-step synthesis of a highly active, mesoporous, titanium-containing silica by using bifunctional templating. Chemistry 7:1437–1443CrossRefPubMedGoogle Scholar
  30. Shin YS, Liu J, Chang JH, Nie ZM, Exarhos G (2001) Hierarchically ordered ceramics through surfactant-templated sol–gel mineralization of biological cellular structures. Adv Mater 13:728–732CrossRefGoogle Scholar
  31. Tsai SJ, Cheng S (1997) Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal Today 33:227–237CrossRefGoogle Scholar
  32. Velev OD, Kaler EW (2000) Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv Mater 12:531–534CrossRefGoogle Scholar
  33. Wang YQ, Tang XH, Yin LX, Huang WP, Hacohen YR, Gedanken A (2000) Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures. Adv Mater 12:1183–1186CrossRefGoogle Scholar
  34. Wang C, Shao C, Liu Y, Li X (2009) Water–dichloromethane interface controlled synthesis of hierarchical rutile TiO2 superstructures and their photocatalytic properties. Inorg Chem 48:1105–1113Google Scholar
  35. Yu JG, Zhao XJ (2001) Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol–gel derived TiO2 thin films. Mater Res Bull 36:97–107CrossRefGoogle Scholar
  36. Yu Y, Yu JC, Yu JG, Kwok YC, Che YK, Zhao JC, Ding L, Ge WK, Wong PK (2005) Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl Catal A 289:186–196CrossRefGoogle Scholar
  37. Yu J, Zhang L, Cheng B, Su Y (2007a) Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania. J Phys Chem C 111:10582–10589CrossRefGoogle Scholar
  38. Yu JG, Su YR, Cheng B (2007b) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990CrossRefGoogle Scholar
  39. Yu J, Liu W, Yu H (2008a) A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst Growth Des 8:930–934CrossRefMathSciNetGoogle Scholar
  40. Yu J, Yu H, Guo H, Li M, Mann S (2008b) Spontaneous formation of a tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation. Small 4:87–91CrossRefPubMedGoogle Scholar
  41. Yuan ZY, Ren TZ, Su BL (2003) Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Adv Mater 15:1462–1465CrossRefGoogle Scholar
  42. Zhang BJ, Davis SA, Mendelson NH, Mann S (2000) Bacterial templating of zeolite fibres with hierarchical structure. Chem Commun 781–782Google Scholar
  43. Zhang B, Davis SA, Mann S (2002) Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films. Chem Mater 14:1369–1375CrossRefGoogle Scholar
  44. Zhang YX, Li GH, Wu YC, Luo YY, Zhang LD (2005) The formation of mesoporous TiO2 spheres via a facile chemical process. J Phys Chem B 109:5478–5481CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Shenmin Zhu
    • 1
    Email author
  • Di Zhang
    • 1
  • Zhixin Chen
    • 2
  • Gang Zhou
    • 1
  • Haibo Jiang
    • 1
  • Jinlong Li
    • 1
  1. 1.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.The Faculty of EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations