Journal of Nanoparticle Research

, Volume 12, Issue 7, pp 2435–2443

Radiolabelling of TiO2 nanoparticles for radiotracer studies

  • Kamel Abbas
  • Izabela Cydzik
  • Riccardo Del Torchio
  • Massimo Farina
  • Efrat Forti
  • Neil Gibson
  • Uwe Holzwarth
  • Federica Simonelli
  • Wolfgang Kreyling
Research Paper

Abstract

Industrially manufactured titanium dioxide nanoparticles have been successfully radiolabelled with 48V by irradiation with a cyclotron-generated proton beam. Centrifugation tests showed that the 48V radiolabels were stably bound within the nanoparticle structure in an aqueous medium, while X-ray diffraction indicated that no major structural modifications to the nanoparticles resulted from the proton irradiation. In vitro tests of the uptake of cold and radiolabelled nanoparticles using the human cell line Calu-3 showed no significant difference in the uptake between both batches of nanoparticles. The uptake was quantified by Inductively Coupled Plasma Mass Spectrometry and high resolution γ-ray spectrometry for cold and radiolabelled nanoparticles, respectively. These preliminary results indicate that alterations to the nanoparticles’ properties introduced by proton bombardment can be controlled to a sufficient extent that their further use as radiotracers for biological investigations can be envisaged and elaborated.

Keywords

Nanoparticles Radiolabelling Titanium dioxide In vitro Cell uptake Nanomanufacturing Nanomedicine 

References

  1. Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and globaltrends. Occup Med 56:300–306CrossRefGoogle Scholar
  2. Anselmann R (2001) Nanoparticles and nanolayers in commercial applications. J Nanopart Res 3:329–336CrossRefGoogle Scholar
  3. Balbus JM, Florini K, Denison RA, Walsh SA (2007) Protecting workers and the environment: an environmental NGO’s perspective on nanotechnology. J Nanopart Res 9:11–22CrossRefGoogle Scholar
  4. Berger JT, Voynow JA, Peters KW, Rose MC (1999) Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am J Respir Cell Mol Biol 20:500–510PubMedGoogle Scholar
  5. Di Giampaolo L, Di Gioacchino M, Ponti J, Sabbioni E, Castellani ML, Reale M, Toto E, Verna N, Conti P, Paganelli R, Boscolo P (2004) “In vitro” comparative immune effects of different titanium compounds. Int J Immunopathol Pharmacol 17(Suppl 2):115–122PubMedGoogle Scholar
  6. Di Gioacchino M, Verna N, Di Giampaolo L, Di Claudio F, Turi MC, Perrone A, Petrarca C, Mariani-Costantini R, Sabbioni E, Boscolo P (2007) Immunotoxicity and sensitizing capacity of metal compounds depend on speciation. Int J Immunopathol Pharmacol 20(Suppl 2):15–22PubMedGoogle Scholar
  7. Florence A, Hussain N (2001) Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev 50(Suppl):S69–S89CrossRefPubMedGoogle Scholar
  8. Forbes B (2000) Human airway epithelial cell lines for in vitro drug transport and metabolism studies. Pharm Sci Technol Today 3:18–27CrossRefPubMedGoogle Scholar
  9. Garabant DH, Fine LJ, Oliver C, Bernstein L, Peters JM (1987) Abnormalities of pulmonary function and pleural disease among titanium metal production workers. Scand J Work Environ Health 13:47–51Google Scholar
  10. Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B (2006) Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res 23:1482–1490CrossRefPubMedGoogle Scholar
  11. Handy RD, Henry TB, Scrown TM, Johnston BD, Tyler CR (2008a) Manufactured nanoparticles: their uptake and effects on fish—a mechanistic analysis. Ecotoxicology 15:396–409CrossRefGoogle Scholar
  12. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008b) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefPubMedGoogle Scholar
  13. IAEA (2008) Experimental Nuclear Reaction Data (EXFOR). http://www-nds.iaea.org/exfor/exfor.htm (continuously updated)
  14. Kam N, O’Connell M, Wisdom J, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer-cell destruction. Proc Natl Acad Sci 102:11600–11605CrossRefPubMedADSGoogle Scholar
  15. Keller KH (2007) Nanotechnology and society. J Nanopart Res 9:5–10CrossRefGoogle Scholar
  16. Kreyling WG, Semmler M, Möller W (2004) Dosimetry and toxicology of ultrafine particles. J Aerosol Med 17:140–152CrossRefPubMedGoogle Scholar
  17. Liao C-M, Chiang Y-H, Chio C-P (2009) Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. J Hazard Mater 162:57–65CrossRefPubMedGoogle Scholar
  18. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldsen K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269CrossRefPubMedADSGoogle Scholar
  19. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefPubMedGoogle Scholar
  20. OECD (2006) Report of the OECD workshop on the safety of manufactured nanomaterials: co-operation, co-ordination and communication. Organization for Economic Co-operation and Development, ParisGoogle Scholar
  21. OECD (2008) Current developments/activities on the safety of manufactures nanomaterials. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials, ParisGoogle Scholar
  22. Owen R, Depledge M (2005) Nanotechnology in the environment: risks and rewards. Mar Pollut Bull 50:609–612CrossRefPubMedGoogle Scholar
  23. Pantarotto D, Briand J, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 1:16–17CrossRefGoogle Scholar
  24. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, Brown S, MacNee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRefPubMedGoogle Scholar
  25. Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 94:873–876CrossRefGoogle Scholar
  26. Roco MC (2008) The journal of nanoparticle research at 10 years. J Nanopart Res 10(Suppl 1):1–2CrossRefGoogle Scholar
  27. Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111CrossRefPubMedGoogle Scholar
  28. Steimer A, Haltner E, Lehr CM (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18:137–182CrossRefPubMedGoogle Scholar
  29. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxice TiO2 nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420CrossRefPubMedGoogle Scholar
  30. Wan H, Winton HL, Soeller C, Stewart GA, Thompson PJ, Gruenert DC, Cannell MB, Garrod DR, Robinson C (2000) Tight junction properties of the immortalized human bronchial epithelial cell lines Calu-3 and 16HBE14o-. Eur Respir J 15:1058–1068CrossRefPubMedGoogle Scholar
  31. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345CrossRefPubMedGoogle Scholar
  32. Zhao X, Striolo A, Cummings P (2005) C60 binds to and deforms nucleotides. Biophys J 89:3856–3862CrossRefPubMedGoogle Scholar
  33. Ziegler JF, Ziegler MD, Biersack JP (2008) SRIM—the stopping and range of ions in matter. Free download possible from http://www.srim.org/

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Kamel Abbas
    • 1
  • Izabela Cydzik
    • 1
  • Riccardo Del Torchio
    • 1
  • Massimo Farina
    • 1
  • Efrat Forti
    • 1
  • Neil Gibson
    • 1
  • Uwe Holzwarth
    • 1
  • Federica Simonelli
    • 1
  • Wolfgang Kreyling
    • 2
  1. 1.European Commission, Joint Research Centre, Institute for Health and Consumer Protection T.P. 500IspraItaly
  2. 2.Comprehensive Pneumology Center, Institute of Lung Biology and DiseaseHelmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH)Neuherberg/MunichGermany

Personalised recommendations