From workplace air measurement results toward estimates of exposure? Development of a strategy to assess exposure to manufactured nano-objects

  • Derk BrouwerEmail author
  • Birgit van Duuren-Stuurman
  • Markus Berges
  • Elzbieta Jankowska
  • Delphine Bard
  • Dave Mark
Special focus: Environmental and human exposure to nanomaterials


In the past few years, an increasing number of studies on workplace air measurements on manufactured nano-materials and -objects have been published. Most of the studies had a more explorative character, so a direct interpretation to workers” exposure for a given exposure situation, activity, or process is not a straight-forward process. In general, the studies use a quite similar package of devices for near real-time monitoring of particle number- and mass concentration in size ranges <100 nm up to 10 μm, and the collection of samples for off-line characterization of air samples. Various approaches for addressing background concentrations and its use to indicate the potential for exposure to nano-objects could be observed. Within the EU-sponsored NANOSH project, a harmonized approach for measurement strategy, data analysis and reporting was developed. In addition to time/activity–concentration profiles as reported by most studies, this approach enables a first step to estimate the potential for exposure to manufactured nano-objects, more quantitatively. The NANOSH data will be collated into a base, which may form the starting point for a harmonized database facilitating overall analysis in near future, to derive estimates for exposure for several exposure situations.


Workplace air measurements Manufactured nano-objects Inhalation exposure Surface area Particle number concentration Agglomerates Decision logic Occupational health EHS 



The NANOSH project is supported by EU-FP6 program, contract NMP4-CT-2006-032777.


The opinions expressed in this article do not necessarily reflect those of the European Commission.


  1. Asbach C, Fissan H, Stahlmecke B, Kulbusch TAJ, Pui DYH (2009) Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanopart Res 11:101–109. doi: 10.1007/s11051-008-9479-8 CrossRefGoogle Scholar
  2. Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ, Ellenbecker MJ, Wardle BL (2008) Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 266:974–981CrossRefGoogle Scholar
  3. Bello D, Wardie BL, Yamamoto N, Guzman deVilloria R, Garcia EJ, Hart AJ, Ahn K, Ellenbecker MJ, Hallock M (2009) Exposure to nanoscale particles and fibres during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11:231–249CrossRefGoogle Scholar
  4. Brouwer DH, Gijsbers JHJ, Lurvink MWMN (2004) Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies. Ann Occup Hyg 48:439–453. doi: 10.1093/annhyg/meh040 CrossRefPubMedGoogle Scholar
  5. Cheng Y-H, Chao Y-C, Wu C-H, Tsai C-J, Uang S-N, Shih T-S (2008) Measurements of ultrafine particle concentrations and size distribution in an iron foundry. J Hazard Mater 158:124–130. doi: 10.1016/j.jhazmat.2008.01.036 CrossRefPubMedGoogle Scholar
  6. Demou E, Peter P, Hellweg S (2008) Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 52:695–706. doi: 10.1093/annhyg/ment058 CrossRefPubMedGoogle Scholar
  7. Fransman W, Cherrie J, van Tongeren M, Schneider T, Tischler M, Schinkel J, Marquart H, Warren N, Kromhout H, Tielemans E (2009) Development of a mechanistic model for the Advanced REACH Tool (ART), Beta release. TNO report V 8667, Zeist, The Netherlands, pp 34–45Google Scholar
  8. Froeschke S, Kohler S, Weber AP, Kasper G (2003) Impact fragmentation of nanoparticle agglomerates. J Aerosol Sci 34:275–287. doi: 10.1016/S0021-98502(02)00185-4 CrossRefGoogle Scholar
  9. Fujitani Y, Kobayashi T, Arashidani K, Kunugita N, Suemura K (2008) Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 5:380–389. doi: 10.1080/15459620802050053 CrossRefPubMedGoogle Scholar
  10. Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee S-B, Ji JH, Cho MH, Yu IJ (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20:741–749. doi: 10.11080/08958370801942238 CrossRefPubMedGoogle Scholar
  11. Heitbrink WA, Evans DE, Ku BK, Maynard AD, Slavin TJ, Peters TM (2009) Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing. J Occup Environ Hyg 6:19–31. doi: 10.1080/15459620802530096 CrossRefPubMedGoogle Scholar
  12. Ibaseta N (2007) Etude experimentale et modelisation de lémission d’aerosols ultrafine lors du deversement de poudres nanostructures. Thesis, Institut National Polytechniques de Toulouse, France. http://ethesis.inp-toulouse.france/archive/00000612/
  13. ISO (2008) Nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplate. ISO TS 27687. International Organization for Standardization, GenevaGoogle Scholar
  14. Ku BK, Maynard AD (2005) Comparing aerosol surface-area measurements of monodisperse ultrafine silver agglomerates by mobility analysis transmission electron microscopy and diffusion charging. J Aerosol Sci 36:1108–1124CrossRefGoogle Scholar
  15. Kuhlbusch TAJ, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 3:558–567. doi: 10.1080/15459620600912280 CrossRefPubMedGoogle Scholar
  16. Kuhlbusch TAJ, Neumann S, Fissan H (2004) Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J Occup Environ Hyg 1:660–671. doi: 10.1080/15459620490502242 CrossRefPubMedGoogle Scholar
  17. Maynard AD (2002a) Estimating aerosol surface area from number and mass concentration. Ann Occup Hyg 47:123–144. doi: 10.1093/annhyg/meg022 CrossRefGoogle Scholar
  18. Maynard AD (2002b) Experimental determination of ultrafine TiO2 deagglomeration in a surrogate pulmonary surfactant: preliminary results. Ann Occup Hyg 46(Supplement 1):197–202. doi: 10.1093/annhyg/mef630 Google Scholar
  19. Maynard AD, Aitken RJ (2007) Assessing exposure to airborne nanomaterials; current abilities and future requirements. Nanotoxicology 1:26–41. doi: 10.1080/17435390701314720 CrossRefGoogle Scholar
  20. Maynard AD, Zimmer AT (2002) Evaluation of grinding aerosols in terms of alveolar dose: the significance of using mass, surface area and number metrics. Ann Occup Hyg 46(Suppl 1):315–319. doi: 10.1093/annhyg/mef654 Google Scholar
  21. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107. doi: 10.1080/15287390490253688 CrossRefPubMedGoogle Scholar
  22. Methner M (2008) Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 5:D63–D69. doi: 10.1080/15459620802059393 PubMedGoogle Scholar
  23. Methner MM, Birch ME, Evan DE, Ku B-K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4:D125–D130. doi: 10.1080/15459620701683871 CrossRefPubMedGoogle Scholar
  24. Money CD, Van Hemmen JJ, Vermeire TG (2007) Scientific governance and the process for exposure scenario development in REACH. J Expo Sci Environ Epidemiol 17:S34–S37. doi: 10.1038/sj.jes.7500564 CrossRefPubMedGoogle Scholar
  25. Ono-Ogasawara M, Serita F, Takaya M (2009) Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment. J Nanopart Res. doi: 10.1007/s11051-9703-1
  26. Peters TM, Elzey S, Johnson R, Park H, Grassian VH, Maher T, O’Shaughnessy P (2009) Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg 6:73–81. doi: 1080/15459620802590058 CrossRefPubMedGoogle Scholar
  27. Ramachandran G, Paulsen D, Watts W, Kittelson D (2005) Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit 2005:728–735. doi: 10.1039/b503854e CrossRefGoogle Scholar
  28. Rothenbacher S, Messerer A, Kasper G (2008) Fragmentation and bond strength of airborne diesel soot agglomerates. Part Fibre Toxicol 5:9. doi: 101186/1743-8977-5-9 CrossRefPubMedGoogle Scholar
  29. Seipenbusch M, Toneva P, Peukert W, Weber AP (2007) Impact fragmentation of metal nanoparticle agglomerates. Part Part Syst Charact 24:193–200. doi: 10.1002/ppsc.200601089 CrossRefGoogle Scholar
  30. Tielemans E, Schneider T, Goede H et al (2008) Conceptual model for assessment of inhalation exposure: defining modifying factors. Ann Occup Hyg 52:577–586. doi: 10.1093/annhyg/mem059 CrossRefPubMedGoogle Scholar
  31. Tsai S-J, Ada E, Isaacs JA, Ellenbecker MJ (2008a) Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res. doi: 10.1007/s11051-008-9459-z
  32. Tsai S-J, Ashter A, Ada E, Mead JL, Barry CF, Ellenbecker MJ (2008b) Airborne nanoparticle release associated with the compounding of nanocomposites using nanoalumina as fillers. Aerosol Air Qual Res 8:160–177Google Scholar
  33. Yeganeh B, Kull CM, Hull MS, Marr LC (2008) Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol 42:4600–4606. doi: 10.1021/es703043c CrossRefPubMedGoogle Scholar
  34. Zartarian V, Bahadori T, McKone T (2005) Adoption of an official ISEA glossary. J Expo Anal Environ Epidemiol 15:1–5. doi: 1053-424565/$30.00 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Derk Brouwer
    • 1
    Email author
  • Birgit van Duuren-Stuurman
    • 1
  • Markus Berges
    • 2
  • Elzbieta Jankowska
    • 3
  • Delphine Bard
    • 4
  • Dave Mark
    • 4
  1. 1.Food and Chemical Risk AssessmentTNO Quality of LifeZeistThe Netherlands
  2. 2.DGUV-BGIASankt AugustinGermany
  3. 3.CIOP-PIBWarsawPoland
  4. 4.Health and Safety LaboratoryBuxtonUK

Personalised recommendations