Journal of Nanoparticle Research

, Volume 12, Issue 6, pp 2069–2079

Nanosensors having dipicolinic acid imprinted nanoshell for Bacillus cereus spores detection

  • Aytaç Gültekin
  • Arzu Ersöz
  • Nalan Yılmaz Sarıözlü
  • Adil Denizli
  • Rıdvan Say
Research Paper

Abstract

Molecular imprinted polymers (MIPs) as a recognition element for sensors are increasingly of interest and MIP nanoclusters have started to appear in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamido-cysteine (MAC) attached to gold–silver nanoclusters, reminiscent of a self-assembled monolayer and have reconstructed surface shell by synthetic host polymers based on molecular imprinting method for recognition. In this method, methacryloylamidoantipyrine–terbium ((MAAP)2–Tb(III)) has been used as a new metal-chelating monomer via metal coordination–chelation interactions and dipicolinic acid (DPA) which is main participant of Bacillus cereus spores used as a model. Nanoshell sensors with templates give a cavity that is selective for DPA. The DPA can simultaneously chelate to Tb(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Tb(III) ion and free coordination spheres has an effect on the binding ability of the gold–silver nanoclusters nanosensor. The binding affinity of the DPA imprinted nanoclusters has been investigated by using the Langmuir and Scatchard methods, and the respective affinity constants (Kaffinity) determined were found to be 1.43 × 104 and 9.1 × 106 mol L−1.

Keywords

Gold–silver nanoclusters sensor Molecularly imprinted polymers Dipicolinic acid Bacillus cereus spores recognition Photoluminescence 

References

  1. Abdelsayed V, Saoud KM, El-Shall MS (2006) Vapor phase synthesis and characterization of bimetallic alloy and supported nanoparticle catalysts. J Nanopart Res 8:519–531CrossRefGoogle Scholar
  2. Almeida JL, Wang L, Morrow JB, Cole KD (2006) Requirements for the development of Bacillus anthracis spore reference materials used to test detection systems. J Res Natl Inst Stand Technol 111:205–217Google Scholar
  3. Bell SEJ, Joseph N, Mackle JN, Sirimuthu NMS (2005) Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid—towards rapid anthrax endospore detection. Analyst 130:545–549CrossRefPubMedADSGoogle Scholar
  4. Borra J-P (2006) Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. J Phys D Appl Phys 39:R19–R54CrossRefADSGoogle Scholar
  5. Brust M, Bethell D, Kiely CJ, Schiffen DJ (1998) Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14:5425–5429CrossRefGoogle Scholar
  6. Collado J, Fernández A, Rodrigo M, Camats J, Martínez LA (2003) Kinetics of deactivation of Bacillus cereus spores. Food Microbiol 20:545–548CrossRefGoogle Scholar
  7. Dang JL, Heroux K, Kearney J, Arasteh A, Gostomski M, Emanuel PA (2001) Bacillus spore inactivation methods affect detection assays. Appl Environ Microbiol 67:3665–3670CrossRefPubMedGoogle Scholar
  8. Diltemiz SE, Say R, Büyüktiryaki S, Hür D, Denizli A, Ersöz A (2008) Quantum dot nanocrystals having guanosine imprinted nanoshell for DNA recognition. Talanta 75:890–896CrossRefPubMedGoogle Scholar
  9. Edelstein AS, Cammarata RC (eds) (1996) Nanomaterials: synthesis, properties and applications. Institute of Physics, PhiladelphiaGoogle Scholar
  10. Ersöz A, Denizli A, Şener İ, Atılır A, Diltemiz S, Say R (2004) Removal of phenolic compounds with nitrophenol imprinted polymer based on Π-Π and hydrogen bonding interactions. Sep Purif Technol 38:173–179CrossRefGoogle Scholar
  11. Fahlman BD (2007) Mount pleasant. Materials chemistry, vol 1. Springer, MI, pp 282–283Google Scholar
  12. Farquharson S, Gift AD, Maksymiuk P, Inscore FE (2004) Rapid dipicolinic acid extraction from Bacillus spores detected by surface-enhanced Raman spectroscopy. Appl Spectrosc 58:351–354CrossRefPubMedADSGoogle Scholar
  13. Fernández A, Ocio MJ, Fernández PS, Martinez A (2001) Effect of heat activation and inactivation conditions on germination and thermal resistance parameters of Bacillus cereus spores. Int J Food Microbiol 63:257–264CrossRefPubMedGoogle Scholar
  14. Fichtel J, Sass H, Rullkötter J (2008) Assessment of spore contamination in pepper by determination of dipicolinic acid with a highly sensitive HPLC approach. Food Control 19:1006–1010CrossRefGoogle Scholar
  15. Goodacre R, Shann B, Gilbert RJ, Timmins EM, McGovern AC, Alsberg BK, Kell DB, Logan NA (2000) Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal Chem 72:119–127CrossRefPubMedGoogle Scholar
  16. Guingab JD, Lauly B, Smith BW, Omenetto N, Winefordner JD (2007) Stability of silver colloids as substrate for surface enhanced raman spectroscopy detection of dipicolinic acid. Talanta 74:271–274CrossRefPubMedGoogle Scholar
  17. Havey CD, Basile F, Mowry C, Voorhees KJ (2004) Evaluation of a micro-fabricated pyrolyzer for the detection of Bacillus anthracis spores. J Anal Appl Pyrolysis 72:55–61CrossRefGoogle Scholar
  18. He J, Luo X, Chen S, Cao L, Sun M, Yu Z (2003) Determination of spore concentration in Bacillus thuringiensis through the analysis of dipicolinate by capillary zone electrophoresis. J Chromatogr A 994:207–212CrossRefPubMedGoogle Scholar
  19. Hindle AA, Hall EAH (1999) Dipicolinic acid (DPA) assay revisited and appraised for spore detection. Analyst 124:1599–1604CrossRefPubMedADSGoogle Scholar
  20. Iwamura M, Morita M (2004) Cation effect on energy transfer reactions from [Tb(2,6-pyridinedicarboxylate)3]3− to anionic chromium(III) and neodymium(III) complexes in aqueous solutions. Inorg Chim Acta 357:3451–3455CrossRefGoogle Scholar
  21. Kharitonov AB, Shipway AN, Willner I (1999) An Au-nanoparticle bis-bipyridinium cyclophane-functionalized ion-sensitive field-effect transistor for the sensing of adrenaline. Anal Chem 71:5441–5443CrossRefPubMedGoogle Scholar
  22. Kolomenskii AA, Schuessler HA (2005) Raman spectra of dipicolinic acid in crystalline and liquid environments. Spectrochim Acta A 61:647–651CrossRefGoogle Scholar
  23. Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic application—a review. J Aerosol Sci 29(5/6):511–535CrossRefGoogle Scholar
  24. Lin CI, Joseph AK, Chang CK, Lee YD (2004) Molecularly imprinted polymeric film on semiconductor nanoparticles: analyte detection by quantum dot photoluminescence. J Chromatogr A 1027:259–262CrossRefPubMedGoogle Scholar
  25. Liz-Marzan LM, Kamat PV (eds) (2003) Nanoscale materials. Kluwer Academic Publishers, LondonGoogle Scholar
  26. Matsui J, Akamatsu K, Nishiguchi S, Miyoshi D, Nawafune H, Tamaki K, Sugimato N (2004) Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. Anal Chem 76:1310–1315CrossRefPubMedGoogle Scholar
  27. Mazas M, González I, López M, González J, Martin R (1995) Effects of sporulation media and strain on thermal resistance of Bacillus cereus spores. Int J Food Sci Technol 30:71–78Google Scholar
  28. Mechaly A, Zahavy E, Fisher M (2008) Development and implementation of a single-chain Fv antibody for specific detection of Bacillus anthracis spores. Appl Environ Microbiol 74:818–822CrossRefPubMedGoogle Scholar
  29. Özkütük EB, Ersöz A, Denizli A, Say R (2008) Preconcentration of phosphate ion onto ion-imprinted polymer. J Hazard Mater 157:130–136CrossRefPubMedGoogle Scholar
  30. Pellegrino PM, Fell NF Jr, Rosen DL, Gillespie JB (1998) Bacterial endospores detection using terbium dipicolinate photoluminescence in the presence of chemical and biological materials. Anal Chem 70:1755–1760CrossRefGoogle Scholar
  31. Pellegrino PM, Fell NF Jr, Gillespie JB (2002) Enhanced spore detection using dipicolinate extraction techniques. Anal Chim Acta 455:167–177CrossRefGoogle Scholar
  32. Persson B, Stenhag K, Nilsson P, Larsson A, Uhlen M, Nygren PA (1997) Analysis of oligonucleotide probe affinities using surface plasmon resonance: a means for mutational scanning. Anal Biochem 246:34–44CrossRefPubMedGoogle Scholar
  33. Rosen DL, Sharpless C, McGown LB (1997) Optical sensors for rapid, sensitive detection and quantitation of bacterial spores. Anal Chem 69:1082–1085CrossRefGoogle Scholar
  34. Say R (2006) Creation of recognition sites for organophosphate esters based on charge transfer and ligand exchange imprinting methods. Anal Chim Acta 579:74–80CrossRefPubMedGoogle Scholar
  35. Sharma J, Chaki NK, Mandele AB, Pasricha R, Vijayamohanan K (2004) Controlled interlinking of Au and Ag nanoclusters using 4-aminothiophenol as molecular interconnects. J Colloid Interf Sci 272:145–152CrossRefGoogle Scholar
  36. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2008) Generation of nanoparticles by spark discharge. J Nanopart Res. doi:10.1007/s11051-008-9407-y
  37. Tsoi PY, Yang J, Sun YT, Sui SF, Yang MS (2000) Surface plasmon resonance study of DNA polymerases binding to template/primer DNA duplexes immobilized on supported lipid monolayers. Langmuir 16:6590–6596CrossRefGoogle Scholar
  38. Wang L, Lin YM (2007) Spore detection in aerobic granules by different dipicolinic acid releasing methods. Bioresour Technol 98:3164–3167CrossRefPubMedGoogle Scholar
  39. Yan F, Dinh TV (2007) Surface-enhanced Raman scattering detection of chemical and biological agents using a portable Raman integrated tunable sensor. Sens Actuators B 121:61–66CrossRefGoogle Scholar
  40. Yang M, Tsoi PY, Li CW, Zhao J (2006) Analysis of interactions of template/primer duplexes with T7 DNA polymerase by oligonucleotide microarray. Sens Actuators B 115:428–433CrossRefGoogle Scholar
  41. Zhang J, Dalal N, Gleason C, Matthews MA, Waller LN, Fox KF, Fox A, Drews MJ, Laberge M, An YH (2006) On the mechanisms of deactivation of Bacillus atrophaeus spores using supercritical carbon dioxide. J Supercrit Fluids 38:268–273CrossRefGoogle Scholar
  42. Zhou Y, Yu B, Levon K (2005) Potentiometric sensor for dipicolinic acid. Biosens Bioelectron 20:1851–1855CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Aytaç Gültekin
    • 1
  • Arzu Ersöz
    • 2
  • Nalan Yılmaz Sarıözlü
    • 3
  • Adil Denizli
    • 4
  • Rıdvan Say
    • 2
    • 5
  1. 1.Department of ChemistryTrakya UniversityEdirneTurkey
  2. 2.Department of Chemistry, Faculty of Science, Yunusemre Campus Anadolu UniversityEskisehirTurkey
  3. 3.Department of BiologyAnadolu UniversityEskisehirTurkey
  4. 4.Department of ChemistryHacettepe UniversityAnkaraTurkey
  5. 5.BİBAM (Plant, Drug and Scientific Researchers Center)Anadolu UniversityEskisehirTurkey

Personalised recommendations