Impact and structure of literature on nanoparticle generation by laser ablation in liquids

  • Stephan Barcikowski
  • Francisco Devesa
  • Kirsten Moldenhauer
Research Paper

Abstract

The number of publications on laser ablation and nanoparticle generation in liquids increased by the factor of 15 in the last decade, with comparable high impact of the most cited articles in this field. A nearly unlimited variety of nanoparticle material, liquid matrix, and conjugative agent can be combined to a huge variety of colloids within a few minutes of laser processing. However, this diversification makes it hard to identify main research directions without a comprehensive literature overview. This investigation evaluates the impact and structure of the literature in this field tagging most prolific subjects and articles. Using an optimized search algorithm, the data sets derived from Science Citation Index (1998–2008) allow for statements on publication subject clusters, impact of articles and journals, as well as mapping global spots of activities.

Keywords

Bibliometric analysis Literature Nanoparticle Laser ablation Colloid Nanomaterial Nanomanufacturing 

References

  1. Abdelsayed V, Glaspell G, Nguyen M, Howe JM, El-Shall MS (2008) Laser synthesis of bimetallic nanoalloys in the vapor and liquid phases and the magnetic properties of PdM and PtM nanoparticles (M = Fe, Co and Ni). Faraday Discuss 138:163–180CrossRefPubMedGoogle Scholar
  2. Asahi T, Sugiyama T, Masuhara H (2008) Laser fabrication and spectroscopy of organic nanoparticles. Acc Chem Res 41:1790–1798CrossRefPubMedGoogle Scholar
  3. Barcikowski S, Hahn A, Kabashin AV, Chichkov BN (2007) Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl Phys A 87:47–55CrossRefADSGoogle Scholar
  4. Barcikowski S, Hustedt M, Chichkov B (2008) Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers. Polimery 53:657–662Google Scholar
  5. Besner S, Kabashin AV, Winnik FM, Meunier M (2009) Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J Phys Chem C 113:9526–9531CrossRefGoogle Scholar
  6. Compagnini G, Scalisi AA, Puglisi O (2002) Ablation of noble metals in liquids: a method to obtain nanoparticles in a thin polymeric film. Phys Chem Chem Phys 4:2787–2791CrossRefGoogle Scholar
  7. Compagnini G, Scalisi AA, Puglisi O (2003) Production of gold nanoparticles by laser ablation in liquid alkanes. J Appl Phys 94:7874–7877CrossRefADSGoogle Scholar
  8. Dahl JA, Maddux BL, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107:2228–2269CrossRefPubMedGoogle Scholar
  9. Faraday M (1857) The Bakerian lecture—experimental relations of gold (and other metals) to light. Phil Trans Royal Soc Lond 147:145–181CrossRefGoogle Scholar
  10. Fojtik A, Henglein A (1993) Laser ablation of films and suspended particles in a solvent—formation of cluster and colloid solutions. Ber Bunsenges Phys Chem Chem Phys 97:252–254Google Scholar
  11. Hahn A, Barcikowski S (2009) Production of bioactive nanomaterial using laser generated nanoparticles. J Laser Micro/Nanoeng 4:51–54Google Scholar
  12. Hahn A, Barcikowski S, Chichkov B (2008) Influences on nanoparticle production during pulsed laser ablation. J Laser Micro/Nanoeng 3:73–77Google Scholar
  13. Heinze T, Shapira P, Senker J, Kuhlmann S (2007) Identifying creative research accomplishments: methodology and results for nanotechnology and human genetics. Scientometrics 70:125–152CrossRefGoogle Scholar
  14. Hodak JH, Henglein A, Giersig M (2000) Laser-induced inter-diffusion in AuAg core–shell nanoparticles. J Phys Chem B 104:11708–11718CrossRefGoogle Scholar
  15. Kabashin AV, Meunier M, Kingston C (2003) Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclo-dextrins. J Phys Chem B 107:4527–4531CrossRefGoogle Scholar
  16. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters—photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128CrossRefGoogle Scholar
  17. Kimura Y, Takata H, Terazima M, Ogawa T, Isoda S (2007) Preparation of gold nanoparticles by the laser ablation in room-temperature ionic liquids. Chem Lett 36:1130–1131CrossRefGoogle Scholar
  18. Kostoff RN, Stump JA, Johnson D, Murday JS, Lau CGY (2006) The structure and infrastructure of the global nanotechnology literature. J Nanopart Res 8:301–321CrossRefGoogle Scholar
  19. Kostoff RN, Koytcheff RG, Lau CGY (2007) Global nanotechnology research literature overview. Technol Forecast Soc Change 74:1733–1747CrossRefGoogle Scholar
  20. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
  21. Mafune F, Kohno JY, Takeda Y et al (2002) Growth of gold clusters into nanoparticles in a solution following laser-induced fragmentation. J Phys Chem B 106:8555–8561CrossRefGoogle Scholar
  22. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRefPubMedADSGoogle Scholar
  23. Pavesi L, Dal Negro L, Mazzoleni C et al (2000) Optical gain in silicon nanocrystals. Nature 408:440–444CrossRefPubMedADSGoogle Scholar
  24. Petersen S, Barcikowski S (2009) In situ bioconjugation—single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172CrossRefGoogle Scholar
  25. Porter AL, Youtie J, Shapira P, Schoeneck DJ (2008) Refining search terms for nanotechnology. J Nanopart Res 10:715–728CrossRefGoogle Scholar
  26. Sattari R, Sajti CL, Khan S, Barcikowski S (2008) Scale-up of nanoparticle production during laser ablation of ceramics in liquid media. In: 27th International conference on applied lasers electro-optics, ICALEO, 20–23 Oct 2008, pp 49–54Google Scholar
  27. Simakin AV, Voronov VV, Shafeev GA (2001) Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem Phys Lett 348:182–186CrossRefADSGoogle Scholar
  28. Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004a) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126:7176–7177CrossRefPubMedGoogle Scholar
  29. Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004b) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108:16864–16869CrossRefGoogle Scholar
  30. Tsuji T, Iryo K, Watanabe N (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85CrossRefADSGoogle Scholar
  31. Usui H, Shimizu Y, Sasaki T et al (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109:120–124CrossRefPubMedGoogle Scholar
  32. Voronov VV, Kazakevich PV, Simakin AV, Shafeev GA (2004) Production of copper and brass nanoparticles upon laser ablation in liquids. Quant Electron 34:951–956CrossRefGoogle Scholar
  33. Wang JB, Yang GW, Zhang CY et al (2003) Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction. Chem Phys Lett 367:10–14CrossRefADSGoogle Scholar
  34. Zeng HB, Cai WP, Li Y et al (2005) Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J Phys Chem B 109:18260–18266CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stephan Barcikowski
    • 1
    • 2
  • Francisco Devesa
    • 1
  • Kirsten Moldenhauer
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany
  2. 2.Excellence Cluster REBIRTHHannoverGermany

Personalised recommendations