Journal of Nanoparticle Research

, Volume 12, Issue 6, pp 2037–2044 | Cite as

Interparticle forces in silica nanoparticle agglomerates

  • M. Seipenbusch
  • S. Rothenbacher
  • M. Kirchhoff
  • H.-J. Schmid
  • G. Kasper
  • A. P. Weber
Research Paper

Abstract

To improve the understanding of the poor dispersability of fumed silica nanoparticle agglomerates, the stability of highly defined agglomerated model particles was investigated. The high temperature synthesis conditions for fumed silica were simulated by tempering. Along with electron-microscopical analysis of the sintering necks, the interparticle forces were investigated by energy resolved fragmentation analysis based on low pressure impaction. At temperatures above 1,000 °C the fragmentability of the agglomerates rapidly decreased while the energy necessary for fragmentation increased. The development of sintering necks was observed for temperatures exceeding 1,300 °C. Comparison of the experimental data with the fragmentation behaviour of a commercially produced fumed silica indicated solid state contacts (sintering necks) as being most numerous in the agglomerates resulting in limited fragmentability.

Keywords

Fragmentation Sintering Van-der-Waals forces Agglomerate stability Nanoscale interactions 

Notes

Acknowledgments

The authors express their gratitude for the funding of this project by the Deutsche Forschungsgemeinschaft under grant number KA 1373.

References

  1. Bandyopadhyaya R, Rong W, Friedlander SK (2004) Dynamics of chain aggregates of carbon nanoparticles in isolation and in polymer films: Implications for nanocomposite materials. Chem Mater 16:3147–3154CrossRefGoogle Scholar
  2. Bikiaris DN, Papageorgiou GZ, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2005) Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci 100:2684–2696CrossRefGoogle Scholar
  3. Kirchhof MJ, Schmid H-J, Peukert W (2004) Reactor system for the study of high-temperature short-time sintering of nanoparticles. Rev Sci Instrum 75:4833–4840CrossRefADSGoogle Scholar
  4. Kirchhof MJ, Schmid H-J, Peukert W (2009) (in preparation)Google Scholar
  5. Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J (1992) Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect 97:193–199CrossRefPubMedGoogle Scholar
  6. Pohl M, Schubert H, Schuchmann HP (2005) Herstellung stabiler Dispersionen aus pyrogener Kieselsäure. Chem Ing Tech 77:258–262CrossRefGoogle Scholar
  7. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169CrossRefPubMedGoogle Scholar
  8. Seipenbusch M, Froeschke S, Weber AP, Kasper G (2002) Investigations on the fracturing of nanoparticle agglomerates—first results. J Proc Mech Eng 216:219–225CrossRefGoogle Scholar
  9. Seipenbusch M, Toneva P, Peukert W, Weber AP (2007) Impact fragmentation of metal nanoparticle agglomerates. Part Part Syst Charact 24:193–200CrossRefGoogle Scholar
  10. Valverde JM, Castellanos A (2008) Fluidization of nanoparticles: a simple equation for estimating the size of agglomerates. Chem Eng J 140:296–304CrossRefGoogle Scholar
  11. Wang Y, Gu G, Wei F, Wu J (2002) Fluidization and agglomerate structure of SiO2 nanoparticles. Powder Technol 124:152–159CrossRefGoogle Scholar
  12. Wengeler R, Teleki A, Vetter M, Pratsinis SE, Nirschl H (2006) High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22:4928–4935CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. Seipenbusch
    • 1
  • S. Rothenbacher
    • 1
  • M. Kirchhoff
    • 2
  • H.-J. Schmid
    • 3
  • G. Kasper
    • 1
  • A. P. Weber
    • 4
  1. 1.Institut für Mechanische Verfahrenstechnik und MechanikUniversität Karlsruhe (TH)KarlsruheGermany
  2. 2.Lehrstuhl für Feststoff- und GrenzflächenverfahrenstechnikFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Mechanische Verfahrenstechnik und UmweltverfahrenstechnikUniversität PaderbornPaderbornGermany
  4. 4.Institut für Mechanische VerfahrenstechnikTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations