Journal of Nanoparticle Research

, Volume 12, Issue 5, pp 1765–1775

The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles

  • Thomas B. Scott
  • Michelle Dickinson
  • Richard A. Crane
  • Olga Riba
  • Gareth M. Hughes
  • Geoffrey C. Allen
Research Paper

Abstract

In order to increase the longevity of contaminant retention, a method is sought to improve the corrosion resistance of iron nanoparticles (INP) used for remediation of contaminated water and thereby extend their industrial lifetime. A multi-disciplinary approach was used to investigate changes induced by vacuum annealing (<5 × 10−8 mbar) at 500 °C on the bulk and surface chemistry of INP. The particle size did not change significantly as a result of annealing but the surface oxide thickness decreased from an average of 3–4 nm to 2 nm. BET analysis recorded a decrease in INP surface area from 19.0 to 4.8 m2 g−1, consistent with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations which indicated the diffusion bonding of previously discrete particles at points of contact. X-ray diffraction (XRD) confirmed that recrystallisation of the metallic cores had occurred, converting a significant fraction of poorly crystalline iron to bcc α-Fe and Fe2B phases. X-ray photoelectron spectroscopy (XPS) indicated a change in the surface oxide stoichiometry from magnetite (Fe3O4) towards wüstite (FeO) and the migration of boron and carbon to the particle surfaces. The improved core crystallinity and the presence of passivating impurity phases at the INP surfaces may act to improve the corrosion resistance and reactive lifespan of the vacuum annealed INP for environmental applications.

Keywords

Iron Nanoparticles Vacuum anneal XPS Environmental remediation 

References

  1. Allen GC, Curtis MT, Hooper AJ, Tucker MJ (1974) X-ray photoelectron-spectroscopy of iron-oxygen systems. J Chem Soc Dalton Trans 14:1525–1530CrossRefGoogle Scholar
  2. Alowitz MJ, Scherer M (2002) Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ Sci Technol 36:299–306CrossRefPubMedGoogle Scholar
  3. Bigg T, Judd SJ (2000) Zero-valent iron for water treatment. Environ Technol 21:661–670CrossRefGoogle Scholar
  4. Bonin PML, Jedral W, Odziemkowski MS, Gillham RW (2000) Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater. Corros Sci 42:1921–1939CrossRefGoogle Scholar
  5. Burke AR, Brown CR, Bowling WC et al (1988) Ignition mechanism of the titanium boron pyrotechnic mixture. Surf Interface Anal 11:353–358CrossRefGoogle Scholar
  6. Callister WD (2003) Materials science and engineering: an introduction. Wiley International Press, NJGoogle Scholar
  7. Cao JS, Elliott D, Zhang WJJ (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506CrossRefGoogle Scholar
  8. Cheng R, Wang JL, Zhang WX (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe-0 and nanosized Fe-0. J Hazard Mater 144:334–339CrossRefPubMedGoogle Scholar
  9. Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311CrossRefPubMedGoogle Scholar
  10. Choi Ch, Dong X, Kim B (2001) Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation. Mater Trans 42:2046–2049CrossRefGoogle Scholar
  11. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, WeinheimGoogle Scholar
  12. Dehlinger AS, Pierson JF, Roman A, Ph Bauer (2003) Properties of iron boride films prepared by magnetron sputtering. Surf Coat Technol 174–175:331–337CrossRefGoogle Scholar
  13. Elihn K, Otten F, Boman M et al (1999) Nanoparticle formation by laser-assisted photolysis of ferrocene. Nanostruct Mater 12:79–82CrossRefGoogle Scholar
  14. Elliott DW, Zhang W (2001) Field assessment of nanoscale biometallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefPubMedGoogle Scholar
  15. Glazier R, Venkatakrishnan R, Gheorghiu F et al (2003) Nanotechnology takes root. Civil Eng 73:64–69Google Scholar
  16. Grovesnor AP, Kobe BA, Biesinger MC, McIntyre NS (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRefGoogle Scholar
  17. Joo SH, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268CrossRefPubMedGoogle Scholar
  18. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefPubMedGoogle Scholar
  19. Karlsson A, Deppert K, Wacaser A et al (2005) Size-controlled nanoparticles by thermal cracking of iron pentacarbonyl. Appl Phys A A80:1579–1583CrossRefADSGoogle Scholar
  20. Koifman IS, Egorshina TV, Laskova GV (1969) X-ray diffraction analysis of borocementite. Metalloved Term Obrab Metall 2:59–60Google Scholar
  21. Krämer A, Leutenecker R, Aubertin F, Gonser U (1994) Amorphization of armco iron by boron implantation and subsequent crystallization by heat-treatment—a GEMS, X-ray and ultramicrohardness study. Hyperfine Interact 94:2367–2372CrossRefADSGoogle Scholar
  22. Kuhn LT, Bojesen A, Timmermann L et al (2002) Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J Phys Condens Matter 14:13551–13567CrossRefADSGoogle Scholar
  23. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem 111:6939–6946Google Scholar
  24. Lien HL, Zhang WX (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047CrossRefGoogle Scholar
  25. Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A 191:97–105CrossRefGoogle Scholar
  26. Liu Y, Majetich SA, Tilton RD et al (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefPubMedGoogle Scholar
  27. Lucci A, Venturello G (1971) Comments on the condition of boron in α-iron. Scripta Metall 5:17–24CrossRefGoogle Scholar
  28. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron-oxides. Anal Chem 49:1521–1529CrossRefGoogle Scholar
  29. Merlin J, Merle P, Garnier S et al (2004) Experimental determination of the carbon solubility limit in ferritic steels. Metal Mater Trans A 35A:1655–1661CrossRefGoogle Scholar
  30. Miehr R, Tratnyek PG, Bandstra JZ et al (2004) Diversity of contaminant reduction reactions by zerovalent iron: role of the reductate. Environ Sci Technol 38:139–147CrossRefPubMedGoogle Scholar
  31. Mondal K, Jegadeesan G, Lalvani SB (2004) Removal of selenate by Fe and NiFe nanosized particles. Ind Eng Chem Res 43:4922–4934CrossRefGoogle Scholar
  32. Moura FCC, Oliveira GC, Araujo MH et al (2005) Formation of highly reactive species at the interface Fe degrees-iron oxides particles by mechanical alloying and thermal treatment: potential application in environmental remediation processes. Chem Lett 34:1172–1173CrossRefGoogle Scholar
  33. Nurmi JT, Tratnyek PG, Sarathy V et al (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230CrossRefPubMedGoogle Scholar
  34. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  35. Ponder SM, Darab JG, Bucher J et al (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRefGoogle Scholar
  36. Riba O, Scott TB, Ragnarsdottir KV, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057CrossRefADSGoogle Scholar
  37. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRefGoogle Scholar
  38. Scott TB (2005) Sorption of uranium onto iron bearing minerals. PhD Thesis, University of BristolGoogle Scholar
  39. Scott TB, Allen GC, Heard PJ, Randall MG (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochim Cosmochim Acta 69:5639–5646CrossRefADSGoogle Scholar
  40. Shimotori T, Nuxoll EE, Cussler EL, Arnold WA (2004) A polymer membrane containing Fe0 as a contaminant barrier. Environ Sci Technol 38:2264–2270CrossRefPubMedGoogle Scholar
  41. Signorini L, Pasquini L, Savini L et al (2003) Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys Rev B 68:195423CrossRefADSGoogle Scholar
  42. Sun YP, Li XQ, Cao J et al (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRefPubMedGoogle Scholar
  43. Valet P, Carel C (1989) The Fe-O (iron-oxygen) phase diagram in the range of the nonstoichiometric monoxide and magnetite at the Fe-rich limit: reduction diagrams. J Phase Equilib 10(3):209–218Google Scholar
  44. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  45. Wriedt HA (1991) The Fe-O (iron-oxygen) system. J Phase Equilib 12:170–200CrossRefGoogle Scholar
  46. Zaera F (1989) A thermal desorption and X-ray photoelectron spectroscopy study of the surface chemistry of iron pentacarbonyl. J Vac Sci Technol A 7:640–645CrossRefADSGoogle Scholar
  47. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. Nanopart Res 4:323–332CrossRefGoogle Scholar
  48. Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Thomas B. Scott
    • 1
  • Michelle Dickinson
    • 1
  • Richard A. Crane
    • 1
  • Olga Riba
    • 1
  • Gareth M. Hughes
    • 2
  • Geoffrey C. Allen
    • 1
  1. 1.Interface Analysis CentreUniversity of BristolBristolUK
  2. 2.Department of MaterialsOxford UniversityOxfordUK

Personalised recommendations