Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1459–1467 | Cite as

A novel femtosecond-laser formation of CdS nanocrystallites in zirconia matrices

  • Katarzyna RaulinEmail author
  • Odile Cristini-Robbe
  • Patrice Baldeck
  • Olivier Stéphan
  • Christophe Kinowski
  • Sylvia Turrell
  • Bruno Capoen
  • Mohamed Bouazaoui
Research Paper

Abstract

A novel method for direct laser writing of two-dimensional cadmium sulfide (CdS) semiconductor nanoparticle microstructures is reported. A two photon or a higher-order multiphoton absorption process, originating from femtosecond laser pulses, was used to decompose CdS precursors dispersed in a zirconia thin film previously dip-coated on a glass substrate. The kinetics of nanoparticle formation as a function of laser power were monitored in situ by photoluminescence spectroscopy. Raman spectroscopy was also performed to characterize the structural changes of the zirconia matrix under irradiation and to verify the formation of CdS nanoparticles. Results show that CdS nanoparticles were formed by two-photon absorption (TPA) with or without the help of an additional carbazole photoinitiator.

Keywords

CdS Localized nanoparticle formation Two-photon absorption Sol–gel Zirconia films 

Notes

Acknowledgments

This study has been partially supported by the Agence Nationale de la Recherche and, more particularly, the PNANO (national Program in Nanosciences and Nanotechnologies) project POMESCO (Organized Photo-growth of Metallic and Semi-Conductor nano-objects intended to Optic devices). K. Raulin wishes to acknowledge the financial support of the French Minister of Research and Education.

References

  1. Asai K, Yamaki T, Ishigure K, Shibata H (1996) Ion bombardment effect on electronic states in CdS fine particles. Thin Solid Films 277(1–2):169–174. doi: 10.1016/0040-6090(95)08019-8 CrossRefADSGoogle Scholar
  2. Azhniuk YM, Milekhin AG, Gomonnai AV, Lopushansky VV, Yukhymchuk VO, Schulze S, Zenkevich EI, Zahn DRT (2004) Resonant Raman studies of compositional and size dispersion of CdS1-xSex nanocrystals in a glass matrix. J Phys Condens Matter 16:9069–9082. doi: 10.1088/0953-8984/16/49/022 CrossRefADSGoogle Scholar
  3. Banerjee B, Jayakrishnan R, Ayyub P (2000) Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J Phys Condens Matter 12:10647–10654. doi: 10.1088/0953-8984/12/50/325 CrossRefADSGoogle Scholar
  4. Bhattacharjee B, Ganguli D, Chaudhuri S (2002) Growth behavior of CdS nanoparticles embedded in polymer and sol–gel silica matrices: relationship with surface-state related luminescence. J Fluoresc 12(3):369–375. doi: 10.1023/A:1021305824793 CrossRefGoogle Scholar
  5. Botzung-Appert E, Zaccaro J, Gourgon C, Usson Y, Baldeck PL, Ibanez A (2005) Spatial control of organic nanocrystal nucleation in sol–gel thin films for 3-D optical data storage devices or chemical multi-sensors. J Cryst Growth 283(3–4):444–449. doi: 10.1016/j.jcrysgro.2005.06.049 CrossRefADSGoogle Scholar
  6. Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58(10):739–741. doi: 10.1016/0038-1098(86)90513-2 CrossRefADSGoogle Scholar
  7. Chestnoy N, Harris TD, Hull R, Brus LE (1986) Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J Phys Chem 90(15):3393–3399. doi: 10.1021/j100406a018 CrossRefGoogle Scholar
  8. De La Rosa-Cruz E, Diaz-Torrez LA, Salas P, Castano VM, Hernandez JM (2001) Evidence of non-radiative energy transfer from the host to the active ions in monoclinic ZrO2:Sm3+. J Phys D 34(14):L83–L86. doi: 10.1088/0022-3727/34/14/102 CrossRefGoogle Scholar
  9. Ehrhart G, Capoen B, Robbe O, Boy P, Turrell S, Bouazaoui M (2006) Structural and optical properties of n-propoxide sol–gel derived ZrO2 thin films. Thin Solid Films 496(2):227–233. doi: 10.1016/j.tsf.2005.08.309 CrossRefADSGoogle Scholar
  10. Fujii T, Hisakawa Y, Winder EJ, Ellis AB (1995) Effect of heat and gases on the photoluminescence of CdS quantum dots confined in silicate glasses prepared by the sol–gel method. Bull Chem Soc Jpn 68:1559–1564. doi: 10.1246/bcsj.68.1559 CrossRefGoogle Scholar
  11. Fullam S, Cottell D, Rensmo H, Fitzmaurice D (2000) Carbon nanotube templated self-assembly and thermal processing of gold nanowires. Adv Mater 12(19):1430–1432. doi: 10.1002/1521-4095(200010)12:19<1430::AID-ADMA1430>3.0.CO;2-8 CrossRefGoogle Scholar
  12. Guo Z, Qu S, Han Y, Liu S (2007) Multi-photon fabrication of two-dimensional periodic structure by three interfered femtosecond laser pulses on the surface of the silica glass. Opt Commun 280(1):23–26. doi: 10.1016/j.optcom.2007.08.041 CrossRefADSGoogle Scholar
  13. Gupta P, Pal R, Bhattacharyya D, Chaudhuri S, Pal AK (1995) Dark and photoconductivity of nanocrystalline CdS films. Phys Status Solidi A 148(2):459–467. doi: 10.1002/pssa.2211480214 CrossRefADSGoogle Scholar
  14. Kaneko K, Sun HB, Duan XM, Kawata S (2003) Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix. Appl Phys Lett 83(7):1426–1428. doi: 10.1063/1.1601302 CrossRefADSGoogle Scholar
  15. Keramidas VG, White WB (1974) Raman scattering study of the crystallization and phase transformations of ZrO2. J Am Ceram Soc 57(1):22–24. doi: 10.1111/j.1151-2916.1974.tb11355.x CrossRefGoogle Scholar
  16. Lebrilla CB, Drewello T, Schwarz H (1987) Deceptive similarities in the reactions of iron(I) and cobalt(I) with linear nitriles in the gas phase. J Am Chem Soc 109(19):5639–5644. doi: 10.1021/ja00253a013 CrossRefGoogle Scholar
  17. Lemercier G, Mulatier JC, Martineau C, Anemian R, Andraud C, Wang I, Stephan O, Amari N, Baldeck P (2005) Two-photon absorption: from optical power limiting to 3D microfabrication. Comptes rendus Chim 8(8):1308–1316. doi: 10.1016/j.crci.2004.11.038 CrossRefGoogle Scholar
  18. Lin Z, Wang Z, Chen W, Lir L, Li G, Liu Z, Han H, Wang Z (1996) Absorption and Raman spectra of Se8-ring clusters in zeolite 5A. Solid State Commun 100(12):841–843. doi: 10.1016/S0038-1098(96)00526-1 CrossRefADSGoogle Scholar
  19. Lippens PE, Lannoo M (1989) Calculation of the band gap for small CdS and ZnS crystallites. Phys Rev B 39(15):10935. doi: 10.1103/PhysRevB.39.10935 CrossRefADSGoogle Scholar
  20. Mathieu H, Richard T, Allegre J, Lefebvre P, Arnaud G, Granier W, Boudes L, Marc JL, Pradel A, Ribes M (1995) Quantum confinement effects of CdS nanocrystals in a sodium borosilicate glass prepared by the sol–gel process. J Appl Phys 77(1):287–293. doi: 10.1063/1.359389 CrossRefADSGoogle Scholar
  21. Motte L, Petit C, Boulanger L, Lixon P, Pileni MP (1992) Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction. Langmuir 8(4):1049–1053. doi: 10.1021/la00040a006 CrossRefGoogle Scholar
  22. Nanda KK, Sarangi SN, Mohanty S, Sahu SN (1998) Optical properties of CdS nanocrystalline films prepared by a precipitation technique. Thin Solid Films 322:21–27. doi: 10.1016/S0040-6090(97)01015-8 CrossRefADSGoogle Scholar
  23. Qiu J, Miura K, Hirao K (2008) Femtosecond laser-induced microfeatures in glasses and their applications. J Non-Cryst Solids 354(12–13):1100–1111. doi: 10.1016/j.jnoncrysol.2007.02.092 CrossRefADSGoogle Scholar
  24. Qu S, Qiu J, Zhao C, Jiang X, Zeng H, Zhu C, Hirao K (2004a) Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses. Appl Phys Lett 84(12):2046–2048. doi: 10.1063/1.1688004 CrossRefADSGoogle Scholar
  25. Qu S, Zhao C, Zhao Q, Qiu J, Zhu C, Hirao K (2004b) One-off writing of multimicrogratings on glass by two interfered femtosecond laser pulses. Opt Lett 29:2058–2060. doi: 10.1364/OL.29.002058 CrossRefPubMedADSGoogle Scholar
  26. Ramsden JJ, Webber SE, Graetzel M (1985) Luminescence of colloidal cadmium sulfide particles in acetonitrile and acetonitrile/water mixtures. J Phys Chem 89(13):2740–2743. doi: 10.1021/j100259a007 CrossRefGoogle Scholar
  27. Romevi N, Kosti R, Romevi M (2006) Off-resonance Raman spectroscopy of Cd1-xMnxS nanoparticles. Phys Status Solidi C 3(5):1295–1297CrossRefADSGoogle Scholar
  28. Rossetti R, Hull R, Gibson JM, Brus LE (1985) Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≈15 to 50 Å size range: Evolution from molecular to bulk semiconducting properties. J Chem Phys 82(1):552–559. doi: 10.1063/1.448727 CrossRefADSGoogle Scholar
  29. Roy A, Sood AK (1996) Surface and confined optical phonons in CdSxSe1-x nanoparticles in a glass matrix. Phys Rev B 53(18):12127. doi: 10.1103/PhysRevB.53.12127 CrossRefADSGoogle Scholar
  30. Salata OV, Dobson PJ, Hull PJ, Hutchinson JL (1994) Fabrication of CdS nanoparticles embedded in a polymer film by gas-aerosol reactive electrostatic deposition technique. Thin Solid Films 251(1):1–3. doi: 10.1016/0040-6090(94)90829-X CrossRefADSGoogle Scholar
  31. Schaffer CB, Brodeur A, García JF, Mazur E (2001) Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy. Opt Lett 26(2):93–95. doi: 10.1364/OL.26.000093 CrossRefPubMedADSGoogle Scholar
  32. Shiang JJ, Risbud SH, Alivisatos AP (1993) Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals. J Chem Phys 98(11):8432–8442. doi: 10.1063/1.464501 CrossRefADSGoogle Scholar
  33. Sivasubramanian V, Arora AK, Premila M, Sundar CS, Sastry VS (2006) Optical properties of CdS nanoparticles upon annealing. Physica E 31(1):93–98. doi: 10.1016/j.physe.2005.10.001 CrossRefADSGoogle Scholar
  34. Tanaka A, Onari S, Arai T (1993) Raman scattering and photoluminescence of Cd-chalcogenide microcrystals. Z Phys D At Mol Clust 26:222–224. doi: 10.1007/BF01425671 CrossRefADSGoogle Scholar
  35. Tanaka T, Ishikawa A, Kawata S (2006) Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure. Appl Phys Lett 88(8):081107-1–081107-3. doi: 10.1063/1.2177636 CrossRefADSGoogle Scholar
  36. Wang Y, Herron N (1987) Chemical effects on the optical properties of semiconductor particles. J Phys Chem 91(19):5005–5008. doi: 10.1021/j100303a023 CrossRefGoogle Scholar
  37. Yanagida S, Enokida T, Shindo A, Shiragami T, Ogata T, Fukumi T, Sakaguchi T, Mori H, Sakata T (1990) Preparation of quantized-CdS doped poly(methyl methacrylate) films. Optical and morphological properties. Chem Lett 19(10):1773–1776. doi: 10.1246/cl.1990.1773 CrossRefGoogle Scholar
  38. Zelner M, Minti H, Reisfeld R, Cohen H, Tenne R (1997) Preparation and characterization of CdS films synthesized in situ in zirconia sol–gel matrix. Chem Mater 9(11):2541–2543. doi: 10.1021/cm970245j CrossRefGoogle Scholar
  39. Zhao QZ, Qiu JR, Jiang XW, Dai EW, Zhou CH, Zhu CS (2005) Direct writing computer-generated holograms on metal film by an infrared femtosecond laser. Opt Express 13(6):2089–2092. doi: 10.1364/OPEX.13.002089 CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Katarzyna Raulin
    • 1
    Email author
  • Odile Cristini-Robbe
    • 1
  • Patrice Baldeck
    • 3
  • Olivier Stéphan
    • 3
  • Christophe Kinowski
    • 1
  • Sylvia Turrell
    • 1
  • Bruno Capoen
    • 2
  • Mohamed Bouazaoui
    • 2
  1. 1.Laboratoire de Spectrochimie Infrarouge et Raman (CNRS, UMR 8516), Bât. C-5, Centre d’Etudes et de Recherches Lasers et Applications (CERLA-FR CNRS 2416)Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  2. 2.Laboratoire de Physique des Lasers, Atomes et Molécules (CNRS, UMR 8523), Bât. P-5, Centre d’Etudes et de Recherches Lasers et Applications (CERLA-FR CNRS 2416)Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  3. 3.Laboratoire de Spectrométrie Physique (CNRS, UMR 5588)Université Joseph-Fourier-CNRSSaint-Martin-d’HèresFrance

Personalised recommendations