Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 39–46 | Cite as

Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots

  • J. Vincent
  • V. Maurice
  • X. Paquez
  • O. Sublemontier
  • Y. Leconte
  • O. Guillois
  • C. Reynaud
  • N. Herlin-Boime
  • O. Raccurt
  • F. Tardif
Special focus: Safety of Nanoparticles

Abstract

This article presents the evolution of the photo-luminescence (PL) of silicon quantum dots (QDs) with an average diameter of 5–6 nm dispersed in alcohol under different conditions. Two samples were considered after alcohol dispersion: freshly synthesized (kept in air for 2 days) QDs which do not exhibit luminescence and air-aged (kept in air for 2 years) QDs exhibiting red-IR luminescence. Experiments performed with addition of a small volume of water, followed by heating for different times showed that the oxidation occurs gradually until transforming totally the initial material in SiO2. The oxidation process does not enable the appearance of PL from the Si core for dispersed non-aged powders, while it results in a blue shift of the PL maximum intensity for the aged ones. The results obtained after UV illumination clearly indicate an effect of the UV irradiation on the luminescence of QDs dispersed in aqueous environment, and the treatments with acidic water lead to the conclusion of a possible enhancement of the PL by hydrogen passivation of the non-radiative defects. This result should be taken into account for post-production treatments and applications, more particularly, considering a controlled and safe use of luminescent Si QDs.

Keywords

Silicon Nanoparticles Quantum dot Passivation Luminescence Aqueous suspensions Environment EHS 

References

  1. Bakos T, Rashkeev S, Pantelides S (2004) H2O and O2 molecules in amorphous SiO2: defect formation and annihilation mechanisms. Phys Rev B 69:195–206CrossRefGoogle Scholar
  2. Batyrev I, Tuttle B, Fleetwood D, Schrimpf R, Tsetseris L, Pantelides S (2008) Reaction of water molecules in silica-based network glasses. Phys Rev Lett 100:105503CrossRefPubMedADSGoogle Scholar
  3. Burns A et al (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042CrossRefPubMedGoogle Scholar
  4. Bychto L, Balaguer M, Pastor E, Chirvony V, Matveeva E (2008) Influence of preparation and storage conditions on the photoluminescence of porous silicon powder with embedded Si nanocrystals. J Nanopart Res 10:1241–1249CrossRefGoogle Scholar
  5. Cartier E, Stathis J, Buchanan D (1993) Passivation and depassivation of silicon dangling bonds at Si/SiO2 interface by atomic hydrogen. Appl Phys Lett 63:1510CrossRefADSGoogle Scholar
  6. Cerofolini GF, Meda L (1997) Mechanisms and kinetics of room-temperature silicon oxidation. J Non-Cryst Solids 216:140–147CrossRefADSGoogle Scholar
  7. Crossley A, Sofield CJ, Sugden S, Clampitt R, Bradley C (1995) In situ low temperature cleaning of silicon surfaces using hydrogen atoms. Vacuum 46(7l):667–672CrossRefGoogle Scholar
  8. Delerue C, Allan G, Lannoo M (1999) Theoritical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11035CrossRefADSGoogle Scholar
  9. Ehbrecht M, Ferkel H, Smirnov V, Stelmakh O, Zhang W, Huisken F (1995) Laser-driven flow reactor as a cluster beam source. Rev Sci Instrum 66:3833–3837CrossRefADSGoogle Scholar
  10. Fujioka K, Hiruoka M, Sato K, Manabe N, Miyasaka R, Hanada S, Hoshino A, Tilley RD, Manome Y, Hirakuri K, Yamamoto K (2008) Luminescent passive-oxidized silicon quantum dots as biological staining labels and their cytotoxicity effects at high concentration. Nanotechnology 19:415102CrossRefGoogle Scholar
  11. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172PubMedCrossRefGoogle Scholar
  12. Huisken F, Amans D, Guillois O, Ledoux G, Reynaud C, Hofmeister H, Cichos F, Martin J (2003) Nanostructuration with visible-light-emitting silicon nanocrystals. New J Phys 5:10.1–10.10CrossRefGoogle Scholar
  13. Kasi SR, Liehr M (1992) Preoxidation Si cleaning and its impact on metal oxide semiconductor characteristics. J Vac Sci Technol A 10(4):795–801CrossRefADSGoogle Scholar
  14. Kirk C (1998) Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys Rev B 38:1255–1273CrossRefADSGoogle Scholar
  15. Lacour F, Guillois O, Portier X, Perez H, Herlin N, Reynaud C (2007) Laser pyrolysis synthesis and characterisation of luminescent silicon nanocrystals. Phys E 38:11–15CrossRefGoogle Scholar
  16. Ledoux G, Gong J, Huisken F, Guillois O, Reynaud C (2002) Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl Phys Lett 80:4834–4836CrossRefADSGoogle Scholar
  17. Li Z, Ruckenstein E (2004) Water soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescencent biological staining labels. Nano Lett 4:1463–1467CrossRefADSGoogle Scholar
  18. Li X, He Y, Talukdar S, Swihart M (2003) Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19:8490–8496CrossRefGoogle Scholar
  19. Lockwood D, Wang A, Bryskiewicz B (1994) Optical absorption evidence for quantum confinement effects in porous silicon. Solid States Commun 89:587–589CrossRefADSGoogle Scholar
  20. Meier C, Gondorf A, Lüttjohann S, Lorke A, Wiggers H (2007) Silicon nanoparticles: absorption, emission, and nature of the electronic bandgap. J Appl Phys 101:103112 1–8Google Scholar
  21. Mende G, Finster J, Flamm D, Schulze D (1983) Oxidation of etched silicon in air at room temperature; Measurements with ultrasoft X-ray photoelectron spectroscopy (ESCA) and neutron activation analysis. Surf Sci 128(1, 2):169–175ADSGoogle Scholar
  22. Morita H, Ohmi T, Hasegawa E, Kawakami M, Ohwada M (1990) Growth of native oxide on a silicon surface. J Appl Phys 68:1272–1281CrossRefADSGoogle Scholar
  23. Morse KA, Pianetta P (2004) Room temperature photo-oxidation of NH4F-prepared H–Si(111)(1 × 1) and Hx–Si(100). J Appl Phys 96(11):6851CrossRefADSGoogle Scholar
  24. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  25. Robertson J (1988) Electronic structure of defects in amorphous SiO2. In: Devine RAB (ed) The physics and technology of amorphous SiO2. Plenum, New York, pp 91–117Google Scholar
  26. Rogach A (ed) (2008) Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications. Berlin: Springer PublicationsGoogle Scholar
  27. Salh R (2007) Si and Ge nanocluster formation in Silica matrix. Semiconductors 41:381–386CrossRefADSGoogle Scholar
  28. Savchyn O, Kik PG, Todi RM, Coffey K (2008) Effect of hydrogen passivation on luminescence-center-mediated Er excitation in Si-rich SiO2 with and without Si nanocrystals. PRB 77:205438CrossRefADSGoogle Scholar
  29. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675PubMedGoogle Scholar
  30. Tardif F, Chabli A, Danel A, Rochat N, Veillerot M (2003) Thermal evolution of chemical oxides and (100) silicon at 300 °C in ambient air as seen by attenuated total reflection infrared spectroscopy. J Electrochem Soc 150(6):G333–G338CrossRefGoogle Scholar
  31. Veinot J (2006) Synthesis, surface functionalization, and properties of freestanding silicon nanocrystals. Chem Commun 4160–4168Google Scholar
  32. Wolkin M, Jorne J, Fauchet P, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82:197–200CrossRefADSGoogle Scholar
  33. Yang DQ, Gillet J, Meunier M, Sacher E (2005) Room temperature oxidation kinetics of Si nanoparticles in air, determined by X-ray photoelectron spectroscopy. J Appl Phys 97:024303CrossRefADSGoogle Scholar
  34. Yoffe A (1993) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 42:173–266CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. Vincent
    • 1
    • 2
  • V. Maurice
    • 1
  • X. Paquez
    • 1
  • O. Sublemontier
    • 1
  • Y. Leconte
    • 1
  • O. Guillois
    • 1
  • C. Reynaud
    • 1
  • N. Herlin-Boime
    • 1
  • O. Raccurt
    • 2
  • F. Tardif
    • 2
  1. 1.DSM/IRAMIS SPAM-LFP (CEA CNRS URA 2453) CEA Saclay Bâtiment 522Gif sur YvetteFrance
  2. 2.LITEN/DTNM/L2T CEA Grenoble Bâtiment C2GrenobleFrance

Personalised recommendations