Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 61–73 | Cite as

Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study

  • Sabrina Barillet
  • Angélique Simon-Deckers
  • Nathalie Herlin-Boime
  • Martine Mayne-L’Hermite
  • Cécile Reynaud
  • Doris Cassio
  • Barbara Gouget
  • Marie Carrière
Special focus: Safety of Nanoparticles

Abstract

The development of nanotechnologies may lead to dissemination of potentially toxic nanoparticles in the environment. Toxicology of these nano-sized particles is thus attracting attention of public and governments worldwide. Our research is focused on the in vitro response of eukaryotic cells to nanoparticles exposure. For this purpose, we used cellular models of primary target organs (lung: A549 alveolar epithelial cells), or secondary target organs (liver: WIF-B9, Can-10 and kidneys: NRK-52E, LLC-PK1 proximal cells), i.e., organs exposed if nanoparticles are translocated through epithelial barriers. These cells were exposed to TiO2, SiC nanoparticles or multi-walled carbon nanotubes (MWCNT). The influence of nanoparticles physico-chemical characteristics on various toxicological endpoints (cytotoxicity, reactive oxygen species generation, genotoxicity) was specified. Our data demonstrate that nanoparticles toxicity depend on their size, morphology, and chemical composition, the finest, spherical shaped, and anatase TiO2 nanoparticles being the more cytotoxic to NRK-52E cells, while SiC nanoparticles exert almost no cytotoxicity. MWCNT cytotoxicity neither depended on their length, nor on the presence of metal impurities. Nanoparticles cytotoxicity also depended on the exposed cell line. All the tested nanoparticles were uptaken by cells and caused intracellular reactive oxygen species generation. Relative to genotoxic effects, DNA strand breaks were detected in NRK-52E cells via the alkaline comet assay after exposure of cells to TiO2 nanoparticles and to a lesser extent after exposure to MWCNT, but no double strand breaks were detected. The originality of this study lies on the panel of nanomaterials which were tested on a variety of cell lines. All these data may lead to a better understanding of nanomaterial toxicity and hazards for health.

Keywords

Nanotoxicology Titanium oxide Silicon carbide Multi-walled carbon nanotubes Cytotoxicity Accumulation Oxidative stress Genotoxicity EHS Nanomedicine 

References

  1. Cassio D, Macias RI, Grosse B, Marin JJ, Monte MJ (2007) Expression, localization, and inducibility by bile acids of hepatobiliary transporters in the new polarized rat hepatic cell lines, Can 3-1 and Can 10. Cell Tissue Res 330(3):447–460CrossRefPubMedGoogle Scholar
  2. Decaens C, Durand M, Grosse B, Cassio D (2008) Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100(7):387–398CrossRefPubMedGoogle Scholar
  3. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115(1):61–69CrossRefPubMedGoogle Scholar
  4. Fan J, Li H, Jiang J, So LK, Lam YW, Chu PK (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4(8):1058–1062CrossRefPubMedGoogle Scholar
  5. Ge C, Lao F, Li W, Li Y, Chen C, Qiu Y, Mao X, Li B, Chai Z, Zhao Y (2008) Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 80:9426–9434CrossRefPubMedGoogle Scholar
  6. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560PubMedCrossRefGoogle Scholar
  7. Glory J, Mierczynska A, Pinault M, Mayne-L’Hermite M, Reynaud C (2007) Dispersion study of long and aligned multi-walled carbon nanotubes in water. J Nanosci Nanotechnol 7(10):3458–3462CrossRefPubMedGoogle Scholar
  8. Jin CY, Zhu BS, Wang XF, Lu QH (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21(9):1871–1877CrossRefPubMedGoogle Scholar
  9. Jones AT (2007) Macropinocytosis: searching for an endocytic identity and a role in the uptake of cell penetrating peptides. J Cell Mol Med 11(4):670–684CrossRefPubMedGoogle Scholar
  10. Marsh M, Pelchen-Matthews A (2000) Endocytosis in viral replication. Traffic 1(7):525–532CrossRefPubMedGoogle Scholar
  11. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63CrossRefPubMedGoogle Scholar
  12. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefPubMedADSGoogle Scholar
  13. Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PH, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164(9):1665–1668PubMedGoogle Scholar
  14. Nemmar A, Hoet PH, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105(4):411–414CrossRefPubMedGoogle Scholar
  15. Oyama Y, Hayashi A, Ueha T, Maekawa K (1994) Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 635(1–2):113–117CrossRefPubMedGoogle Scholar
  16. Park EJ, Chan DW, Park JH, Oettinger MA, Kwon J (2003) DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 31(23):6819–6827CrossRefPubMedGoogle Scholar
  17. Park S, Lee YK, Jung M, Kim KH, Chung N, Ahn EK, Lim Y, Lee KH (2007) Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. Inhal Toxicol 19(Suppl 1):59–65CrossRefPubMedGoogle Scholar
  18. Pignon B, Maskrot H, Leconte Y, Coste S, Reynaud C, Herlin-Boime N, Gervais M, Guyot Ferreol V, Pouget T, Tranchant JF (2008) Versatility of laser pyrolysis applied to synthesis of TiO2 nanoparticles, application to UV attenuation. Eur J Inorg Chem 2008:833–889Google Scholar
  19. Pinault M, Mayne-L’Hermite M, Reynaud C, Beyssac O, Rouzaud JN, Clinard C (2004) Carbon nanotubes produced by aerosol pyrolysis: growth mechanisms and post-annealing effects. Diam Relat Mater 13(4–8):1266–1269CrossRefGoogle Scholar
  20. Pinault M, Mayne-L’Hermite M, Reynaud C, Pichot V, Launois P, Ballutaud D (2005) Growth of multiwalled carbon nanotube during the initial stages of aerosol-assisted CCVD. Carbon 116(1):2968–2976CrossRefGoogle Scholar
  21. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74CrossRefPubMedGoogle Scholar
  22. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377:159–169CrossRefPubMedGoogle Scholar
  23. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185CrossRefPubMedGoogle Scholar
  24. Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16(6–7):453–459CrossRefPubMedGoogle Scholar
  25. Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253(1–3):137–146CrossRefPubMedGoogle Scholar
  26. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191CrossRefPubMedGoogle Scholar
  27. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222(2):141–151CrossRefPubMedGoogle Scholar
  28. Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3(3):351–358CrossRefPubMedGoogle Scholar
  29. Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 24(2):108–115PubMedGoogle Scholar
  30. Strum JM, Wicken J, Stanbury JR, Karnovsky MJ (1971) Appearance and function of endogenous peroxidase in fetal rat thyroid. J Cell Biol 51(1):162–175CrossRefPubMedGoogle Scholar
  31. Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551CrossRefPubMedGoogle Scholar
  32. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185CrossRefPubMedGoogle Scholar
  33. Wang J, Deng X, Yang S, Wang H, Zhao Y, Liu Y (2008a) Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 2(1):28–32CrossRefGoogle Scholar
  34. Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008b) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80CrossRefPubMedGoogle Scholar
  35. Yamashita R, Fujiwara Y, Ikari K, Hamada K, Otomo A, Yasuda K, Noda M, Kaburagi Y (2007) Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Mol Cell Biochem 298(1–2):83–92CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sabrina Barillet
    • 1
  • Angélique Simon-Deckers
    • 1
  • Nathalie Herlin-Boime
    • 2
  • Martine Mayne-L’Hermite
    • 2
  • Cécile Reynaud
    • 2
  • Doris Cassio
    • 3
  • Barbara Gouget
    • 1
    • 4
  • Marie Carrière
    • 1
  1. 1.Laboratoire Pierre SüeCEA-CNRS UMR9956, IRAMIS, CEA SaclayGif sur YvetteFrance
  2. 2.Laboratoire Francis PerrinCEA-CNRS URA2453, IRAMIS, CEA SaclayGif sur YvetteFrance
  3. 3.INSERM UMR-S 757, Centre UniversitaireOrsay cedexFrance
  4. 4.Scientific DepartmentAFSSAMaisons-AlfortFrance

Personalised recommendations