Journal of Nanoparticle Research

, Volume 12, Issue 4, pp 1367–1375 | Cite as

Electrical properties of surface functionalized silicon nanoparticles

  • Jürgen Nelles
  • Dorota Sendor
  • Frank-Martin Petrat
  • Ulrich Simon
Research Paper

Abstract

The present study relates to the applicability of silicon nanoparticles as basic component in printing inks for the fabrication of printable electronic devices. It is systematically investigated, how the surface functionalization of silicon nanoparticles with 1-alkenes affects the electrical properties of thin films made of them. Therefore, films of as-prepared silicon nanoparticles with a size of 42 nm as well as freshly etched ones, both terminated with hydrogen, are compared with films of silicon nanoparticles functionalized with n-octene, n-dodecene, allylmercaptan, and allylamine, respectively. It is found, that the activation energy of the electron transport through the films is in the range of 0.5 eV and scales with the polarity of the functionalization.

Keywords

Silicon nanoparticles Electrical properties Charge transport Hydrosilylation Impedance spectroscopy 

Notes

Acknowledgments

This project is co-financed by the European Union and is financially supported by the state of North Rhine-Westphalia in Germany.

Supplementary material

11051_2009_9676_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1534 kb)

References

  1. Böttger H, Bryksin VV (1985) Hopping conduction in solids. VCH, WeinheimGoogle Scholar
  2. Britton DT, Härting M (2006) Printed nanoparticulate composites for silicon thick-film electronics. Pure Appl Chem 78:1723–1739CrossRefGoogle Scholar
  3. Buriak JM (2002) Organometallic chemistry on silicon and germanium surfaces. Chem Rev 102:1271–1308CrossRefPubMedGoogle Scholar
  4. Collier CP, Vossmeyer T, Hearth JR (1998) Nanocrystal superlattices. Annu Rev Phys Chem 49:371–404CrossRefPubMedADSGoogle Scholar
  5. Compagnoni ChM, Gusmeroli R, Ielmini D et al (2007) Silicon nanocrystal memories: a status update. J Nanosci Nanotechnol 7:193–205PubMedGoogle Scholar
  6. Dyre JC (2000) Universality of ac conduction in disordered solids. Rev Mod Physics 72:873–892CrossRefADSGoogle Scholar
  7. Efros AL, Shklovskii BI (1975) Coulomb gap and low temperature conductivity of disordered systems. J Phys C 8:L49–L51CrossRefADSGoogle Scholar
  8. Fu Y, Willander M, Dutta A et al (2000a) Carrier conduction in a Si-nanocrystal-based single-electron transistor-I. Effect of gate bias. Superlattice Microstruct 28:177–187CrossRefADSGoogle Scholar
  9. Fu Y, Willander M, Dutta A et al (2000b) Carrier conduction in a Si-nanocrystal-based single-electron transistor-II. Effect of drain bias. Superlattice Microstruct 28:189–198CrossRefADSGoogle Scholar
  10. Jonscher AK (1996) Universal relaxation law. Chelsea Dielectric Press, LondonGoogle Scholar
  11. Knipping J, Wiggers H, Rellinghaus B et al (2004) Synthesis of high purity silicon nanoparticles in a low pressure microwave reactor. J Nanosci Nanotechnol 4:1039–1044CrossRefPubMedGoogle Scholar
  12. Koplin E, Niemeyer CM, Simon U (2006) Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. J Mater Chem 16:1338–1344CrossRefGoogle Scholar
  13. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, HeidelbergGoogle Scholar
  14. Lampert MA, Mark P (1970) Current injection in solids. Academic, New YorkGoogle Scholar
  15. Lide DR (ed) (1995) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  16. Mark P, Helfrich W (1962) Space-charge-limited currents in organic crystals. J Appl Phys 33:205CrossRefADSGoogle Scholar
  17. Mott NF (1969) Conduction in non-crystalline materials. Philos Mag 19:835CrossRefADSGoogle Scholar
  18. Murray CB, Kagan NC, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefADSGoogle Scholar
  19. Nelles J, Sendor D, Bertmer M et al (2007a) Surface chemistry of n-octane modified silicon nanoparticles analyzed by IR, 13C CPMAS NMR, EELS, and TGA. J Nanosci Nanotechnol 7:2818–2822CrossRefPubMedGoogle Scholar
  20. Nelles J, Sendor D, Ebbers A et al (2007b) Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid Polym Sci 285:729–736CrossRefGoogle Scholar
  21. Ng CY, Chen TP, Wong JI et al (2007) Performance of silicon nanocrystal non-volatile memory devices under various programming mechanisms. J Nanosci Nanotechnol 7:329–334PubMedGoogle Scholar
  22. Oda S, Huang SY, Salem MA et al (2007) Charge storage and electron/light emission properties of silicon nanocrystals. Physica E 38:59–63CrossRefADSGoogle Scholar
  23. Rafiq MA, Tsuchiya Y, Mizuta H et al (2006) Hopping conduction in size-controlled Si nanocrystals. J Appl Phys 100:014303/1–014303/4Google Scholar
  24. Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 69:7–710Google Scholar
  25. Šimánek E (1981) The temperature dependence of the electrical resistivity of granular metals. Solid State Commun 40:1021–1023CrossRefGoogle Scholar
  26. Simon U, Sanders D, Jockel J et al (2002) Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J Comb Chem 4:511–515CrossRefPubMedGoogle Scholar
  27. Steimle RF, Muralidhar R, Rao R et al (2007) Silicon nanocrystal non-volatile memory for embedded memory scaling. Microelectron Reliab 47:585–592CrossRefGoogle Scholar
  28. Teo BK, Sun H (2007) Silicon-based low-dimensional nanomaterials and nanodevices. Chem Rev 107:1454–1532CrossRefPubMedGoogle Scholar
  29. Rafiq MA, Tsuchiya Y, Mizuta H et al (2005) Charge injection and trapping in silicon nanocrystals. Appl Phys Lett 87:182101/1–182101/3Google Scholar
  30. Zhang J, Shklovskii BI (2004) Density of states and conductivity of a granular metal or an array of quantum dots. Phys Rev B 70:115317–115329CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jürgen Nelles
    • 1
  • Dorota Sendor
    • 1
  • Frank-Martin Petrat
    • 2
  • Ulrich Simon
    • 1
  1. 1.RWTH Aachen UniversityInstitute of Inorganic ChemistryAachenGermany
  2. 2.Evonik Industries AGCreavis Technologies & InnovationMarlGermany

Personalised recommendations