A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method

  • Margarita Sanchez-Dominguez
  • Magali Boutonnet
  • Conxita Solans
Brief Communication


A novel and straightforward approach, based on oil-in-water (o/w) microemulsions, was developed for the synthesis of inorganic nanoparticles at ambient conditions. It implies the use of organometallic precursors dissolved in nanometre-scale oil droplets of o/w microemulsions. Addition of reducing or oxidizing/precipitating agents results in the formation of metallic or metal oxide nanoparticles, respectively. Nonionic o/w microemulsion systems were chosen, and several key compositions were selected for nanoparticle synthesis at 25 °C. High Resolution Electron Microscopy revealed that small nanoparticles of metals (Pt, Pd and Rh) and nanocrystalline metal oxide (cerium (IV) oxide with cubic type crystalline structure confirmed by XRD), of less than 7 nm can be obtained in mild conditions.


o/w Microemulsion Nanoreactor Nanoceria Pt-nanoparticles Rh-nanoparticles Pd-nanoparticles Nanomanufacturing 



This research was financially supported by Ministerio de Educación y Ciencia (MEC Spain, grant number CTQ2005-09063-CO3-O2 and CTQ2008-01979) and Generalitat de Catalunya (grant number 2005-SGR-00812). M. Sanchez-Dominguez is grateful to CSIC for a JAE-Doc contract and to COST ACTION D43 for a Short Term Scientific Mission.


  1. Boutonnet M, Kizling J, Stenius P (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf 5:209–225. doi: 10.1016/0166-6622(82)80079-6 CrossRefGoogle Scholar
  2. Boutonnet M, Lödberg S, Svensson EE (2008) Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis. Curr Opin Colloid Interface Sci 13:270–286. doi: 10.1016/j.cocis.2007.10.001 CrossRefGoogle Scholar
  3. Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR (1998) The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie 53:392–396Google Scholar
  4. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. doi: 10.1021/cr030027b PubMedCrossRefGoogle Scholar
  5. Destrée C, Nagy JB (2006) Mechanism of formation of inorganic and organic nanoparticles from microemulsions. Adv Colloid Interface Sci 123–126:353–367. doi: 10.1016/j.cis.2006.05.022 PubMedCrossRefGoogle Scholar
  6. Dörfler HD, Große A (1996) Applications of microemulsions with different compositions in detergents technique. Prog Colloid Polym Sci 101:113–115. doi: 10.1007/BFb0114453 CrossRefGoogle Scholar
  7. Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15. doi: 10.1016/j.cis.2006.11.009 PubMedCrossRefGoogle Scholar
  8. Hentze HP, Kaler EW (2003) Polymerization of and within self-organized media. Curr Opin Colloid Interface Sci 8:164–178. doi: 10.1016/S1359-0294(03)00018-9 CrossRefGoogle Scholar
  9. Holmberg K (2003) Organic reactions in microemulsions. Curr Opin Colloid Interface Sci 8:187–196. doi: 10.1016/S1359-0294(03)00017-7 CrossRefGoogle Scholar
  10. Holmberg K (2004) Surfactant-templated nanomaterials synthesis. J Colloid Interface Sci 274:355–365. doi: 10.1016/j.jcis.2004.04.006 PubMedCrossRefGoogle Scholar
  11. Larsson KM, Adlercreutz P, Mattiasson B, Olsson U (1991) Enzyme catalysis in uni- and bi-continuous microemulsions: dependence of kinetics on substrate partitioning. J Chem Soc Faraday Trans 87:465–471. doi: 10.1039/ft9918700465 CrossRefGoogle Scholar
  12. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45:89–121. doi: 10.1016/S0169-409X(00)00103-4 PubMedCrossRefGoogle Scholar
  13. Lindman B, Friberg SE (1999) Microemulsions: a hystorical overview. In: Kumar P, Mittal KL (eds) Handbook of microemulsion science and technology. Marcel Dekker, New York, pp 1–12Google Scholar
  14. López-Quintela MA, Tojo C, Blanco MC, Garcia-Rio L, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278. doi: 10.1016/j.cocis.2004.05.029 CrossRefGoogle Scholar
  15. Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13:3266–3276. doi: 10.1021/la960319q CrossRefGoogle Scholar
  16. Scholes FH, Hughes AE, Hardin SG, Lynch P, Miller PR (2007) Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem Mater 19:2321–2328. doi: 10.1021/cm063024z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Margarita Sanchez-Dominguez
    • 1
  • Magali Boutonnet
    • 2
  • Conxita Solans
    • 1
  1. 1.Consejo Superior de Investigaciones Científicas (CSIC)Instituto de Química Avanzada de Cataluña (IQAC), CIBER-BBNBarcelonaSpain
  2. 2.Department of Chemical Engineering and Technology, Chemical TechnologyRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations