Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 3, pp 939–949 | Cite as

Optimal sample preparation for nanoparticle metrology (statistical size measurements) using atomic force microscopy

  • Christopher M. Hoo
  • Trang Doan
  • Natasha Starostin
  • Paul E. West
  • Martha L. MecartneyEmail author
Research Paper

Abstract

Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2–5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.

Keywords

Atomic force microscope Instrumentation Nanoparticles Nanoscale metrology Size characterization 

Notes

Acknowledgments

This work was supported by the U.S. Navy under contract # N00244-06-P-2341 and N00244-05-P-2456. Additional support from Pacific Nanotechnology Inc. is gratefully acknowledged.

References

  1. Bornside DE, Macosko CW, Scriven LE (1987) On the modeling of spin coating. J Imag Technol 13(4):122–130Google Scholar
  2. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A 202:175–186. doi: 10.1016/S0927-7757(01)01087-1 CrossRefGoogle Scholar
  3. Fujita M, Yamaguchi Y (2006) Development of three-dimensional structure formation simulator of colloidal nanoparticles during drying. J Chem Eng Jpn 39(1):83–89. doi: 10.1252/jcej.39.83 CrossRefGoogle Scholar
  4. Ghosh M, Fan F, Stebe KJ (2007) Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces. Langmuir 23:2180–2183. doi: 10.1021/la062150e CrossRefPubMedGoogle Scholar
  5. Hong YK, Kim H, Lee G, Kim W, Park JL, Cheon J, Koo JY (2002) Controlled two-dimensional distribution of nanoparticles by spin-coating method. Appl Phys Lett 80:844–846. doi: 10.1063/1.1445811 CrossRefADSGoogle Scholar
  6. Hoo CM, Starostin N, West P, Mecartney ML (2008) A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. J Nanopart Res 10:89–96. doi: 10.1007/s11051-008-9435-7 CrossRefGoogle Scholar
  7. Juillerat F, Solak H, Bowen P, Hoffmann H (2005) Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 16:1311–1316. doi: 10.1088/0957-4484/16/8/055 CrossRefADSGoogle Scholar
  8. Leite ED, Lee EJH, Ribeiro C, Longo E (2006) Controlled thickness deposition of ultrathin ceramic films by spin coating. J Am Ceram Soc 89(6):2016–2020. doi: 10.1111/j.1551-2916.2006.00992.x CrossRefGoogle Scholar
  9. Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105(17):3353–3357. doi: 10.1021/jp0102062 CrossRefGoogle Scholar
  10. Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S (2003) Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J Phys Chem B 107:8607–8611. doi: 10.1021/jp034773w CrossRefGoogle Scholar
  11. Ogi T, Modesto-Lopez LB, Iskandar F, Okuyama K (2007) Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method. Colloid Surf A 297:71–78CrossRefGoogle Scholar
  12. Schmidt HK (2000) Nanoparticles for ceramic and nanocomposite processing. Mol Cryst Liquid Cryst 353:165–179. doi: 10.1080/10587250008025657 CrossRefGoogle Scholar
  13. Shi FG (1994) Size dependent thermal vibrations and melting in nanocrystals. J Mater Res 9(5):1307–1313. doi: 10.1557/JMR.1994.1307 CrossRefADSGoogle Scholar
  14. Taminiau TH, Segerink FB, Moerland RJ, Kuipers L, Van Hulst NF (2007) Near-field driving of a optical monopole antenna. J Opt A 9:S315–S321. doi: 10.1088/1464-4258/9/9/S06 Google Scholar
  15. Thomson T, Toney MF, Raoux S, Lee SL, Sun S, Murray CB, Terris BD (2004) Structural and magnetic model of self-assembled FePt nanoparticle arrays. J Appl Phys 96(2):1197–1201. doi: 10.1063/1.1759393 CrossRefADSGoogle Scholar
  16. Wang D, Möhwald H (2004) Rapid fabrication of binary colloidal crystals by stepwise spin-coating. Adv Mater 16(3):244–247. doi: 10.1002/adma.200305565 CrossRefGoogle Scholar
  17. Xia D, Brueck SRJ (2004) A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating. Nano Lett 4(7):1295–1299. doi: 10.1021/nl049355x CrossRefADSGoogle Scholar
  18. Xia D, Biswas A, Li D, Bruek SRJ (2004) Directed self-assembly of silica nanoparticles into nanometer-scale patterned surfaces using spin coating. Adv Mater 16:1427–1432. doi: 10.1002/adma.200400095 CrossRefGoogle Scholar
  19. Xiong X, Makaram P, Busnaina A, Bakhtari K, Somu S, McGruer N, Park J (2006) Large scale directed assembly of nanoparticles using nanotrench templates. Appl Phys Lett 89:193108. doi: 10.1063/1.2385067 CrossRefADSGoogle Scholar
  20. Xiong X, Busnaina A, Selvarasah S, Somu S, Wei M, Mead J, Chen C, Aceros J, Makaram P, Dokmeci MR (2007) Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl Phys Lett 91:063101. doi: 10.1063/1.2763967 CrossRefADSGoogle Scholar
  21. Zheng J, Zhu Z, Chen H, Liu Z (2000) Nanopatterned assembling of colloidal gold nanoparticles on silicon. Langmuir 16:4409–4412. doi: 10.1021/la991332o CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Christopher M. Hoo
    • 1
  • Trang Doan
    • 1
  • Natasha Starostin
    • 2
    • 3
  • Paul E. West
    • 2
  • Martha L. Mecartney
    • 1
    Email author
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California, IrvineIrvineUSA
  2. 2.Technology CenterPacific Nanotechnology, Inc.Fountain ValleyUSA
  3. 3.Rosemount Analytical Inc., Emerson Process ManagementIrvineUSA

Personalised recommendations