Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 663–673 | Cite as

Mesoporous silica-coated NaYF4:Yb3+, Er3+ particles for drug release

  • Deyan Kong
  • Yong Fan
  • Cuimiao Zhang
  • Jun Lin
Research Paper

Abstract

NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. These NaYF4:Yb3+, Er3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 (P 123) as structure-directing agent and other materials. The composites can load ibuprofen and release the drug in the phosphate buffer solution (PBS). The composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively. The composites have the mesoporous structure. In addition, the composites emit red fluorescence (from Er3+) under 980 nm near infrared laser excitation, which can be used as fluorescent probes in the drug-delivery system.

Keywords

Up-conversion fluorescence Drug release Mesoporous silica Drug delivery Nanomedicine 

Notes

Acknowledgments

This project is financially supported by the National Basic Research Program of China (2007CB935502) and the National Natural Science Foundation of China (NSFC 50702057, 50872131, 00610227).

References

  1. Andersson J, Rosenholm J, Areva S, Lindén M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater 16:4160–4167CrossRefGoogle Scholar
  2. Arruebo M, Galán M, Navascués N, Téllez C, Marquina C, Ibarra MR, Santamaría J (2006) Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem Mater 18:1911–1919CrossRefGoogle Scholar
  3. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet PJ (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482CrossRefPubMedGoogle Scholar
  4. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128:7444–7445CrossRefPubMedGoogle Scholar
  5. Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM (2004) Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm 57:533–540CrossRefPubMedGoogle Scholar
  6. Doat A, Fanjul M, Pellé F, Hollande E, Lebugle A (2003) Europium-doped bioapatite: a new photostable biological probe, internalizable by human cells. Biomaterials 24:3365–3371CrossRefPubMedGoogle Scholar
  7. Fisher KA, Huddersman KD, Taylor M (2003) Comparison of micro- and mesoporous inorganic materials in the uptake and release of the drug model fluorescein and its analogues. Chem Eur J 9:5873–5878CrossRefGoogle Scholar
  8. Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577–4593CrossRefMathSciNetADSGoogle Scholar
  9. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K (1999) Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chem Mater 11:1110–1119CrossRefGoogle Scholar
  10. Hirai T, Orikoshi T, Komasawa I (2002) Preparation of Y2O3:Yb, Er infrared-to-visible conversion phosphor fine particles using an emulsion liquid membrane system. Chem Mater 14:3576–3583CrossRefGoogle Scholar
  11. Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regí M (2004) Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous Mesoporous Mater 68:105–109CrossRefGoogle Scholar
  12. Izquierdo-Barba I, Martinez Á, Doadrio AL, Pérez-Pariente J, Vallet-Regí M (2005) Release evaluation of drugs from ordered three-dimensional silica structures. Eur J Pharm Sci 26:365–373CrossRefPubMedGoogle Scholar
  13. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefADSGoogle Scholar
  14. Lai CY, Trewyn BG, Jeftinija D, Jeftinija MK, Xu S, Jeftinija S, S-Y Lin V (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459CrossRefPubMedGoogle Scholar
  15. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436CrossRefPubMedADSGoogle Scholar
  16. Lin YS, Tsai CP, Huang HY, Kuo CT, Hung Y, Huang DM, Chen YC, Mou CY (2005) Well-ordered mesoporous silica nanoparticles as cell markers. Chem Mater 17:4570–4573CrossRefGoogle Scholar
  17. Lu AH, Li WC, Kiefer A, Schmidt W, Bill E, Fink G, Schüth F (2004a) Fabrication of magnetically separable mesostructured silica with an open pore system. J Am Chem Soc 126:8616–8617CrossRefPubMedGoogle Scholar
  18. Lu HC, Yi GS, Zhao SY, Chen DP, Guo LH (2004b) Synthesis and characterization of multi-functional nanoparticles possessing magnetic, up-conversion fluorescence and bio-affinity properties. J Mater Chem 14:1336–1341CrossRefGoogle Scholar
  19. Mal NK, Fujiwara M, Tanaka Y (2003) Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421:350–353CrossRefPubMedADSGoogle Scholar
  20. Niedbala RS, Feindt H, Kardos K, Vail T, Burton J, Bielska B, Li S, Milunic D, Bourdelle P, Vallejo R (2001) Detection of analytes by immunoassay using up-converting phosphor technology. Anal Biochem 293:22–30CrossRefPubMedGoogle Scholar
  21. Rámila A, Muñoz B, Pérez-Pariente J, Vallet-Regí M (2003) Mesoporous MCM-41 as drug host system. J Sol-Gel Sci Technol 26:1199–1202CrossRefGoogle Scholar
  22. Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New YorkGoogle Scholar
  23. Schröck E, du Manoir E, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledberrer DH, Bar-Am L, Soenksen D, Garini Y, Ried T (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497CrossRefPubMedADSGoogle Scholar
  24. Sen T, Sebastianelli A, lan Bruce J (2006) Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations. J Am Chem Soc 128:7130–7131CrossRefPubMedGoogle Scholar
  25. Song SW, Hidajat K, Kawi S (2005) Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir 21:9568–9575CrossRefPubMedGoogle Scholar
  26. Suyver JF, Grimm J, van Veen MK, Biner D, Krämer KW, Güdel HU (2006) Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+. J Lumin 117:1–12CrossRefGoogle Scholar
  27. Tourné-Péteilh C, Lerner DA, Charnay C, Nicole L, Bégu S, Devoisselle JM (2003) The potential of ordered mesoporous silica for the storage of drugs: the example of a pentapeptide encapsulated in a MSU-Tween 80. ChemPhysChem 4:281–286CrossRefPubMedGoogle Scholar
  28. Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  29. van de Rijke F, Zijlmans H, Li S, Vail T, Raap AK, Niedbala RS, Tanke HJ (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19:273–276CrossRefGoogle Scholar
  30. Wang LY, Li YD (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem Mater 19:727–734CrossRefGoogle Scholar
  31. Wu PG, Zhu JH, Xu ZG (2004) Template-assisted synthesis of mesoporous magnetic nanocomposite particles. Adv Funct Mater 14:345–351CrossRefGoogle Scholar
  32. Yi GS, Lu HC, Zhao SY, Ge Y, Yang WJ, Chen DP, Guo LH (2004) Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett 4:2191–2196CrossRefADSGoogle Scholar
  33. Ying LM, Bruckbauer A, Rothery AM, Korchev YE, Klenerman D (2002) Programmable delivery of DNA through a nanopipet. Anal Chem 74:1380–1385CrossRefPubMedGoogle Scholar
  34. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefPubMedADSGoogle Scholar
  35. Zhao WR, Gu JL, Zhang LX, Chen HR, Shi JL (2005) Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 127:8916–8917CrossRefPubMedGoogle Scholar
  36. Zhu YF, Shi JL, Shen WH, Dong XP, Feng JW, Ruan ML, Li YS (2005a) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int Ed 44:5083–5087CrossRefGoogle Scholar
  37. Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005b) Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous Mesoporous Mater 85:75–81CrossRefGoogle Scholar
  38. Zijlmans HJMAA, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, Tanke HJ (1999) Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. Anal Biochem 267:30–36CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations