Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 635–643 | Cite as

Luminescent properties of YVO4:Eu/SiO2 core–shell composite particles

  • Amurisana Bao
  • Hua Lai
  • Yuming Yang
  • Zhilong Liu
  • Chunyan Tao
  • Hua Yang
Research Paper


We report an efficient process for preparing monodisperse SiO2@Y0.95Eu0.05VO4 core–shell phosphors using a simple citrate sol–gel method and without the use of surface-coupling silane agents or large stabilizers. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectra were used to characterize the resulting SiO2@Y0.95Eu0.05VO4 core–shell phosphors. The XRD results demonstrate that the Y0.95Eu0.05VO4 particles crystallization on the surface of SiO2 annealing at 800 °C is perfectly and the crystallinity increases with raising the annealing temperature. The obtained core–shell phosphors have a near perfect spherical shape with narrow size distribution (average size ca. 500 nm and an average thickness of ~50 nm), are not agglomerated, and have a smooth surface. The thickness of the YVO4:Eu3+ shells on the SiO2 cores could be easily tailored by changing the mass ratio of shell to core (W = [YVO4]/[SiO2]) (~50 nm for W = 30%). The Eu3+ shows a strong PL luminescence (dominated by 5D0 − 7F2 red emission at 618 nm) under the excitation of 320 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the values of W.


SiO2 YVO4:Eu3+ Core–shell Sol–gel process Luminescent properties Nanoparticles Synthesis 



This work is supported by National Natural Science Foundation of China (NSFC).


  1. Berndt I, Pedersen JS, Richtering W (2006) Temperature-sensitive core–shell microgel particles with dense shell. Angew Chem Int Ed 45:1737–1741. doi: 10.1002/anie.200503888 CrossRefGoogle Scholar
  2. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer-Verlag, Berlin, Germany, p 41Google Scholar
  3. Brecher C, Samelson H, Lempicik A, Riley R, Peters T (1967) Polarized spectra and crystal-field parameters of Eu in YVO4. Phys Rev 155:178. doi: 10.1103/PhysRev.155.178 CrossRefADSGoogle Scholar
  4. Chen YJ, Zhu CL, Wang TH (2006) Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotechnology 17:4537–4541. doi: 10.1088/0957-4484/17/18/002 CrossRefADSGoogle Scholar
  5. Erdei S, Schlecht R, Ravichandran D (1999) Hydrolyzed colloid reaction (HCR) technique for phosphor powder preparation. Displays 19:173–178. doi: 10.1016/S0141-9382(98)00047-X CrossRefGoogle Scholar
  6. Fujii T, Kodaira K, Kawauchi O, Tanaka N, Yamashita H, Anpo M (1997) Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si−Al glasses. J Phys Chem B 101:10631–10637. doi: 10.1021/jp971540u CrossRefGoogle Scholar
  7. Hall SR, Davis SA, Mann S (2000) Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct synthetic route. Langmuir 16:1454–1456. doi: 10.1021/la9909143 CrossRefGoogle Scholar
  8. Huignard A, Gacoin T, Boilot JP (2000) Synthesis and luminescence properties of colloidal YVO4:Eu phosphors. Chem Mater 12:1090–1094. doi: 10.1021/cm990722t CrossRefGoogle Scholar
  9. Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP (2002) Synthesis and characterizations of YVO4:Eu colloids. Chem Mater 14:2264–2269. doi: 10.1021/cm011263a CrossRefGoogle Scholar
  10. Iler RK (1959) US Patent. No. 2808815, 250Google Scholar
  11. Jang J, Nam Y, Yoon H (2005) Tunable magnetic arrangement of iron oxide nanoparticles in situ synthesized on the solid substrate. Adv Mater 17:1382–1386. doi: 10.1002/adma.200401841 CrossRefGoogle Scholar
  12. Kang WY, Park JS, Kim DK, Suh KS (2001) Silica spheres coated with YVO4:Eu3+ layers via sol–gel process. Bull Korean Chem Soc 22:921–927Google Scholar
  13. Kompe K, Borchert H, Storz J, Lobo A, Adam S, Moller T, Haase M (2003) Synthesis and characterization of high-quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell). Angew Chem Int Ed 42:5513–5516. doi: 10.1002/anie.200351943 CrossRefGoogle Scholar
  14. Kong DY, Yu M, Lin CK, Liu XM, Lin J, Fang J (2005) Sol–gel synthesis of ZnSiO:Mn@ SiO2 spherical core–shell particles. J Electrochem Soc 9:152–156Google Scholar
  15. Krassimir PV, Blaaderen AV (2001) Efficient photocatalytic degradation of environmental pollutants with mass-produced ZnS nanocrystals. Langmuir 17:4779. doi: 10.1021/la0101548 252CrossRefGoogle Scholar
  16. Lawrie GA, Battersby BJ, Trau M (2003) Synthesis of optically complex core–shell colloidal suspensions: pathways to multiplexed biological. Adv Funct Mater 13:887–896. doi: 10.1002/adfm.200304390 CrossRefGoogle Scholar
  17. Lee IS, Lee N, Park J, Kim BH, Yi YW, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged. J Am Chem Soc 128:10658–10659. doi: 10.1021/ja063177n CrossRefPubMedGoogle Scholar
  18. Levine AK, Palilla FC (1964) Size-and shape-tailored hydrothermal synthesis of YVO4 crystals in ultra-wide pH range conditions. Appl Phys Lett 5:118. doi: 10.1063/1.1723611 CrossRefADSGoogle Scholar
  19. Lin CK, Kong DY, Liu XM, Wang H, Yu M, Lin J (2007) Monodisperse and core−shell-structured SiO2@ YBO3:Eu3+ spherical particles. Inorg Chem 46:2674–2681. doi: 10.1021/ic062318j CrossRefPubMedGoogle Scholar
  20. Liu GX, Hong GY (2005) Synthesis of SiO2/Y2O3: Eu core–shell materials and hollow spheres. J Alloy Compd 178:1647–1651Google Scholar
  21. Newport A, Silver J, Vecht A (2000) The synthesis of fine particle yttrium vanadate phosphors from spherical power precursors using urea precipitation. J Electro Chem Sci 944:3144–3947Google Scholar
  22. Nien YT, Hwang KH, Chen IG, Yu K (2008) Photoluminescence enhancement of ZnS:Mn nanoparticles by SiO2 coating. J Alloy Compd 455:519–523Google Scholar
  23. Ohmori M, Matijevic E (1992) Preparation and properties of uniform coated colloidal particles. VII. Silica on hematite. J Colloid Interface Sci 251:150594Google Scholar
  24. Riwotzki K, Haase M (1998) Wet-chemical synthesis of doped colloidal nanoparticles: YVO4:Ln (Ln = Eu, Sm, Dy). J Phys Chem B 102:10129–10135. doi: 10.1021/jp982293c CrossRefGoogle Scholar
  25. Riwotzki K, Haase M (2001) Colloidal YVO4:Eu and YP0.95V0.05O4:Eu nanoparticles: luminescence and energy transfer processes. J Phys Chem B 105:12709–12713. doi: 10.1021/jp0113735 CrossRefGoogle Scholar
  26. Ryan JN, Elimelech M, Baeseman JL, Magelky RD (2000) Silica-coated titania and zirconia colloids for subsurface transport field experiments. Environ Sci Technol 34:2000–2005. doi: 10.1021/es9909531 CrossRefGoogle Scholar
  27. Schuetzand P, Caruso F (2002) Fabrication and optical properties of core–shell structured spherical SiO2@ GdVO4:Eu3+ phosphors. Chem Mater 14:4509. doi: 10.1021/cm0212257 CrossRefGoogle Scholar
  28. Shen WY, Pang ML, Lin J, Fang JY (2005) Host-sensitized luminescence of Dy in nanocrystalline β-GaO prepared by a Pechini-type sol–gel. J Electrochem Soc 152:1125–1129. doi: 10.1149/1.1847674 CrossRefGoogle Scholar
  29. Sondi I, Fedynyshyn TH, Sinta R, Matijevic E (2000) Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 16:9031–9036. doi: 10.1021/la000618m CrossRefGoogle Scholar
  30. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  31. Teng F, Tian ZJ, Xiong GX, Xu ZS (2004) Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation. Catal Today 93–95:651–657. doi: 10.1016/j.cattod.2004.06.125 CrossRefGoogle Scholar
  32. Vecht A, Gibbons C, Davies D, Jing X, Marsh P, Ireland T, Silver J, Newport A, Barber D (1999) Engineering phosphors for field emission displays. J Vac Sci Technol B 17:750–757. doi: 10.1116/1.590633 CrossRefGoogle Scholar
  33. Wang DS, He JB, Rosenzweig N, Rosenzweig Z (2004) Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett 4:2337–2342. doi: 10.1021/nl048653r CrossRefADSGoogle Scholar
  34. Wang H, Lin CK, Liu XM, Lin J (2005) Monodisperse spherical core–shell-structured phosphors obtained by functionalization of silica. Appl Phys Lett 187:181907. doi: 10.1063/1.2123382 CrossRefADSGoogle Scholar
  35. Wu X, Tao Y, Song C, Mao C, Dong L, Zhu J (2006) Morphological control and luminescent properties of YVO4:Eu nanocrystals. J Phys Chem B 110:15791–15796. doi: 10.1021/jp060527j CrossRefPubMedGoogle Scholar
  36. Wyckoff RWG (1964) Crystal structure. Interscience, New YorkGoogle Scholar
  37. Xia HL, Tang FQ (2003) Surface synthesis of zinc oxide nanoparticles on silica spheres: preparation and characterization. J Phys Chem B 107:9175–9178. doi: 10.1021/jp0261511 CrossRefGoogle Scholar
  38. Yu M, Lin J, Fang J (2005) Silica spheres coated with YVO4:Eu3+ layers via sol–gel process: a simple method to obtain. Phys Lett 17:1783–1791Google Scholar
  39. Zimmer JP, Kim SW, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide−zinc selenide core−shell nanocrystals. J Am Chem Soc 128:2526–2527. doi: 10.1021/ja0579816 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Amurisana Bao
    • 1
  • Hua Lai
    • 1
  • Yuming Yang
    • 1
  • Zhilong Liu
    • 1
  • Chunyan Tao
    • 2
  • Hua Yang
    • 1
  1. 1.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.Key Lab for Supramolecular Structure and Materials of Ministry of EducationJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations