Advertisement

Journal of Nanoparticle Research

, Volume 12, Issue 2, pp 573–580 | Cite as

Silicon nanoparticles generated by femtosecond laser ablation in a liquid environment

  • N. G. SemaltianosEmail author
  • S. Logothetidis
  • W. Perrie
  • S. Romani
  • R. J. Potter
  • S. P. Edwardson
  • P. French
  • M. Sharp
  • G. Dearden
  • K. G. Watkins
Research Paper

Abstract

Silicon nanoparticles were generated by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse energy = 3.5 μJ (fluence = 0.8 J/cm2)] ablation of silicon in deionized water. Nanoparticles with diameters from ~5 up to ~200 nm were observed to be formed in the colloidal solution. Their size distribution follows log-normal function with statistical median diameter of ≈20 nm. Longer ablation time leads to a narrowing of the nanoparticle size distribution due to the interaction of the ablating laser beam with the produced nanoparticles. Raman spectroscopy measurements confirm that the nanoparticles exhibit phonon quantum confinement effects and indicate that under the present conditions of ablation they are partially amorphous.

Keywords

Silicon nanoparticles Synthesis Femtosecond laser ablation Raman spectroscopy 

Notes

Acknowledgements

N.G.S. acknowledges support by a Marie Curie European Reintegration Grant (ERG), contract number: PERG03-GA-2008-226029, 83573 under the project OMALANP.

References

  1. Albert O, Roger S, Glinec Y, Loulergue JC, Etchepare J, Boulmer-Leborgne C, Perrière J, Million E (2003) Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers. Appl Phys A 76(3):319–323CrossRefADSGoogle Scholar
  2. Amoruso S, Ausanio G, Barone AC, Bruzzese R, Gragnaniello L, Vitiello M, Wang X (2005) Ultrashort laser ablation of solid matter in vacuum: a comparison between the picosecond and femtosecond regimes. J Phys B At Mol Opt Phys 38:L329–L338CrossRefADSGoogle Scholar
  3. Andsager D, Hilliard J, Hetrick JM, AbuHassan LH, Plisch M, Nayfeh MH (1993) Quenching of porous silicon photoluminescence by deposition of metal adsorbates. J Appl Phys 74:4783–4785CrossRefADSGoogle Scholar
  4. Bermejo D, Cardona M (1979) Raman scattering in pure and hydrogenated amorphous germanium and silicon. J Non Crystal Sol 32:405–419CrossRefADSGoogle Scholar
  5. Campbell IH, Fauchet PM (1986) The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun 58(10):739–741CrossRefADSGoogle Scholar
  6. Cavalleri A, Sokolowski-Tinten K, Bialkowski J, Schreiner M, von der Linde D (1999) Femtosecond melting and ablation of semiconductors studied with time of flight mass spectroscopy. J Appl Phys 85(6):3301–3309CrossRefADSGoogle Scholar
  7. Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48(15):11024–11036CrossRefADSGoogle Scholar
  8. Glover TE, Ackerman GD, Belkacem A, Heimann PA, Hussain Z, Lee RW, Padmore HA, Ray C, Schoenlein RW, Steele WF, Young DA (2003) Metal-insulator transitions in an expanding metallic fluid: particle formation kinetics. Phys Rev Lett 90(23):236102-1-4CrossRefADSGoogle Scholar
  9. Glover TE, Ackerman GD, Lee RW, Young DA (2004) Probing particle synthesis during femtosecond laser ablation: initial phase transition kinetics. Appl Phys B 78:995–1000CrossRefADSGoogle Scholar
  10. Glushko VP, Gurvich LV, Veyts IV, Alock CB (1990) Thermodynamic properties of individual substances: elements and compounds. Taylor and Francis, LondonGoogle Scholar
  11. Hirasawa M, Orii T, Seto T (2004) Effect of insitu annealing on physical properties of Si nanoparticles synthesized by pulsed laser ablation. Appl Phys A 79:1421–1424CrossRefADSGoogle Scholar
  12. Itina TE, Gouriet K, Zhigilei LV, Nöel S, Hermann J, Sentis M (2007) Mechanisms of small clusters production by short and ultra-short laser ablation. Appl Surf Sci 253(19):7656–7661CrossRefADSGoogle Scholar
  13. Kanemitsu Y, Uto H, Masumoto Y, Matsumoto T, Futagi T, Mimura H (1993) Microstructure and optical properties of free-standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites. Phys Rev B 48(4):2827–2830CrossRefADSGoogle Scholar
  14. Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B, Paillard V (2000) Photoluminescence properties of silicon nanocrystals as a function of their size. Phys Rev B 62(23):15942–15951CrossRefADSGoogle Scholar
  15. Linros J, Lalic N, Galeckas A, Grivickas V (1999) Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2. J Appl Phys 86:6128–6134CrossRefADSGoogle Scholar
  16. Makino T, Inada M, Umezu I, Sugimura A (2005) Structural and optical properties of surface-hydrogenated silicon nanocrystallites prepared by reactive pulsed laser ablation. J Phys D Appl Phys 38:3507–3511CrossRefADSGoogle Scholar
  17. Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659CrossRefPubMedADSGoogle Scholar
  18. Meier C, Lüttjohann S, Kravets VG, Nienhaus H, Lorke A, Wiggers H (2006) Raman properties of silicon nanoparticles. Physica E 32:155–158CrossRefADSGoogle Scholar
  19. Meier C, Gondorf A, Lüttjohann S, Lorke A, Wiggers H (2007) Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap. J Appl Phys 101:103112-1-7CrossRefADSGoogle Scholar
  20. Million E, Perrière J, Défourneau RM, Défourneau D, Albert O, Etchepare J (2003) Femtosecond pulsed-laser deposition of BaTiO3. Appl Phys A 77(1):73–80CrossRefADSGoogle Scholar
  21. Min KS, Shcheglov KV, Yang CM, Atwater HA, Brongersma ML, Polman A (1996) Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2. Appl Phys Lett 69:2033–2035CrossRefADSGoogle Scholar
  22. Mishra P, Jain KP (2002) Raman, photoluminescence and optical absorption studies on nanocrystalline silicon. Mat Sci Eng B 95(3):202–213CrossRefGoogle Scholar
  23. Muramoto J, Inmaru T, Nakata Y, Okada T, Maeda M (1999) Influence of ambient gas on formation process of Si nanoparticles by laser ablation. Appl Phys A 69:S239–S241ADSGoogle Scholar
  24. Nöel S, Hermann J, Itina T (2007) Investigation of nanoparticle generation during femtosecond laser ablation of metals. Appl Surf Sci 253(15):6310–6315CrossRefADSGoogle Scholar
  25. Patrone L, Nelson D, Sfarov VI, Sentis M, Marine W (2000) Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J Appl Phys 87:3829–3837CrossRefADSGoogle Scholar
  26. Pavesi L, Dal Negro L, Mazzoleni C, Franco G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 408:440–444CrossRefPubMedADSGoogle Scholar
  27. Perez D, Lewis LJ (2002) Ablation of solids under femtosecond laser pulses. Phys Rev Lett 89(25):255504-1-4CrossRefADSGoogle Scholar
  28. Perrière J, Boulmer-Leborgne C, Benzerga R, Tricot S (2007) Nanoparticle formation by femtosecond laser ablation. J Phys D Appl Phys 40:7069–7076CrossRefADSGoogle Scholar
  29. Procházka M, Mojzeš P, Štěpánek J, Vlčková B, Turpin P-Y (1997) Probing applications of laser-ablated Ag colloids in SERS spectroscopy: improvement of ablation procedure and SERS spectral testing. Anal Chem 69:5103–5108CrossRefGoogle Scholar
  30. Richter H, Wang ZP, Ley L (1981) The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun 39:625–629CrossRefADSGoogle Scholar
  31. Soni RK, Fonseca LF, Resta O, Buzaianu M, Weisz SZ (1999) Size-dependent optical properties of silicon nanocrystals. J Lumin 83–84:187–191CrossRefGoogle Scholar
  32. Strickland D, Mourou G (1985) Compression of amplified chirped optical pulses. Opt Commun 56(3):219–221CrossRefADSGoogle Scholar
  33. Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T (1990) Quantum size effects on photoluminescence in ultrafine Si particles. Appl Phys Lett 56:2379–2380CrossRefADSGoogle Scholar
  34. Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85CrossRefADSGoogle Scholar
  35. Umezu I, Minami H, Senoo H, Sugimura A (2007) Synthesis of photoluminescent colloidal silicon nanoparticles by pulsed laser ablation in liquids. J Phys Conf Ser 59:392–395CrossRefADSGoogle Scholar
  36. Walters RJ, Bourianoff GI, Atwater HA (2005) Field-effect electroluminescence in silicon nanocrystals. Nat Mater 4:143–146CrossRefPubMedADSGoogle Scholar
  37. Wang G, Yau ST, Mantey K, Nayfeh MH (2008) Fluorescent Si nanoparticle-based electrode for sensing biomedical substances. Opt Commun 281:1765–1770CrossRefADSGoogle Scholar
  38. Wu MH, Mu R, Ueda A, Henderson DO, Vlahovic B (2005) Production of silicon quantum dots for photovoltaic applications by picosecond pulsed laser ablation. Mat Sci Eng B 116:273–277CrossRefGoogle Scholar
  39. Yang SH, Nguyen TP, Le Rendu P, Hsu CS (2005) Optical and electrical properties of PPV/SiO2 and PPV/TiO2 composite materials. Compos Part A Appl Sci Manuf 36(4):509–513CrossRefGoogle Scholar
  40. Yang SH, Le Rendu P, Nguyen TP, Hsu CS (2007) Fabrication of MEH-PPV/SiO2 and MEH-PPV/TiO2 nanocomposites with enhanced luminescent stabilities. Rev Adv Mater Sci 15:144–149Google Scholar
  41. Zhigilei LV (2003) Dynamics of the plume formation and parameters of the ejected clusters in short-pulse laser ablation. Appl Phys A 76:339–350CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • N. G. Semaltianos
    • 1
    Email author
  • S. Logothetidis
    • 1
  • W. Perrie
    • 2
  • S. Romani
    • 2
  • R. J. Potter
    • 2
  • S. P. Edwardson
    • 2
  • P. French
    • 3
  • M. Sharp
    • 3
  • G. Dearden
    • 2
  • K. G. Watkins
    • 2
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of EngineeringUniversity of LiverpoolLiverpoolUK
  3. 3.General Engineering Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations