Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 273–284 | Cite as

Nanometer interatomic distances in Rydberg Matter clusters confirmed by phase-delay spectroscopy

  • Leif HolmlidEmail author
Research Paper


Recently, rotational spectroscopy in the radio frequency range was used to determine the bond lengths in several types of potassium Rydberg Matter (RM) clusters with high precision (Mol Phy 105: 933–939, 2007). Due to the large bond lengths of a few nm and well-ordered structure of such clusters, it is expected that light scattering can be used to determine their dimensions. A weak carbon dioxide laser beam is introduced collinearly into a tunable RM cavity. When RM is formed, a very pronounced fringe structure with several hundred fringes is observed at the detector as a function of the grating position. These fringes show a phase delay of the carbon dioxide laser light caused by reflections within the RM clusters. The delay lengths derived from the fringe structure give distances between the rows of atoms in the clusters. The excitation level of the most easily observed clusters is n = 5. Clusters with n = 6, 7, and 8 are also commonly detected. The bond distance for n = 5 is found to be 3.804 ± 0.015 nm, while that for n = 6 is 5.525 ± 0.014 nm, in accurate agreement with values from rotational spectroscopy.


Cluster Nanometer bond lengths Rydberg Matter Light scattering Phase-delay Intracavity Nanostructure 


  1. Åkesson H, Badiei S, Holmlid L (2006) Angular variation of time-of-flight of neutral clusters released from Rydberg Matter: primary and secondary Coulomb explosion processes. Chem Phys 321:215–222. doi: 10.1016/j.chemphys.2005.08.016 CrossRefADSGoogle Scholar
  2. Alpermann T, Holmlid L (2007) Confocal laser microspectroscopic Rabi-flopping study of an iron oxide emitter surface used for Rydberg Matter generation. Spectrochim Acta [A] 67:877–885. doi: 10.1016/j.saa.2006.09.003 CrossRefGoogle Scholar
  3. Badiei S, Holmlid L (2002) Neutral Rydberg Matter clusters from K: extreme cooling of translational degrees of freedom observed by neutral time-of-flight. Chem Phys 282:137–146. doi: 10.1016/S0301-0104(02)00601-8 CrossRefADSGoogle Scholar
  4. Badiei S, Holmlid L (2003) Stimulated emission in Rydberg Matter—a thermal ultra-broadband tunable laser. Chem Phys Lett 376:812–817. doi: 10.1016/S0009-2614(03)01126-6 CrossRefADSGoogle Scholar
  5. Badiei S, Holmlid L (2005) The Rydberg Matter laser: excitation, delays and mode effects in the laser cavity medium. Appl Phys B 81:549–559. doi: 10.1007/s00340-005-1895-1 CrossRefADSGoogle Scholar
  6. Badiei S, Holmlid L (2006) Experimental studies of fast fragments of H Rydberg matter. J Phys At Mol Opt Phys 39:4191–4212. doi: 10.1088/0953-4075/39/20/017 CrossRefADSGoogle Scholar
  7. Chiesa M, Giamello E, Di Valentin C, Pacchioni G, Sojka Z, Van Doorslaer S (2005) Nature of the chemical bond between metal atoms and oxide surfaces: new evidence from spin density studies of K atoms on alkaline earth oxides. J Am Chem Soc 127:16935–16944. doi: 10.1021/ja0542901 CrossRefPubMedGoogle Scholar
  8. Hecht E (1998) Optics, 3rd edn. Addison-Wesley, Reading, MAGoogle Scholar
  9. Holmlid L (1998) Classical energy calculations with electron correlation of condensed excited states—Rydberg Matter. Chem Phys 237:11–19. doi: 10.1016/S0301-0104(98)00259-6 CrossRefADSGoogle Scholar
  10. Holmlid L (2002) Conditions for forming Rydberg Matter: condensation of Rydberg states in the gas phase versus at surfaces. J Phys Condens Matter 14:13469–13479. doi: 10.1088/0953-8984/14/49/305 CrossRefADSGoogle Scholar
  11. Holmlid L (2004a) Phase-delay Rabi-flopping spectroscopy: a method sensitive to Rydberg species at surfaces. J Phys Chem A 108:11285–11291. doi: 10.1021/jp046288m CrossRefGoogle Scholar
  12. Holmlid L (2004b) Optical stimulated emission transitions in Rydberg Matter observed in the range 800–14000 nm. J Phys At Mol Opt Phys 37:357–374. doi: 10.1088/0953-4075/37/2/005 CrossRefADSGoogle Scholar
  13. Holmlid L (2007a) Precision bond lengths for Rydberg Matter clusters K19 in excitation levels n = 4, 5 and 6 from rotational radio-frequency emission spectra. Mol Phys 105:933–939. doi: 10.1080/00268970701197387 CrossRefADSGoogle Scholar
  14. Holmlid L (2007b) Stimulated emission spectroscopy of Rydberg Matter: observation of Rydberg orbits in the core ions. Appl Phys B 87:273–281. doi: 10.1007/s00340-007-2579-9 CrossRefADSGoogle Scholar
  15. Holmlid L (2008) Rotational spectra of large Rydberg Matter clusters K37, K61 and K91 give trends in K–K bond distances relative to electron orbit radius. J Mol Struct 885:122–130. doi: 10.1016/j.molstruc.2007.10.017 CrossRefADSGoogle Scholar
  16. Kotarba A, Adamski G, Sojka Z, Witkowski S, Djega-Mariadassou G (2000a) Potassium at catalytic surfaces—stability, electronic promotion and excitation. Stud Surf Sci Catal (International Congress on Catalysis, 2000, Pt. A,) 130A:485–490Google Scholar
  17. Kotarba A, Baranski A, Hodorowicz S, Sokolowski J, Szytula A, Holmlid L (2000b) Stability and excitation of potassium promoter in iron catalysts—the role of KFeO2 and KAlO2 phases. Catal Lett 67:129–134. doi: 10.1023/A:1019013504729 CrossRefGoogle Scholar
  18. Manykin ÉA, Ozhovan MI, Polu’ektov PP (1981) Collective electron state in a system of highly excited atoms. Sov Phys Dokl 26:974–975ADSGoogle Scholar
  19. Manykin ÉA, Ozhovan MI, Polu’ektov PP (1992a) Condensed states of excited cesium atoms. Sov Phys JETP 75:440–445Google Scholar
  20. Manykin ÉA, Ozhovan MI, Polu’ektov PP (1992b) Decay of a condensate consisting of excited cesium atoms. Sov Phys JETP 75:602–605Google Scholar
  21. Wang J, Holmlid L (2000) Formation of long-lived Rydberg states of H2 at K impregnated surfaces. Chem Phys 261:481–488. doi: 10.1016/S0301-0104(00)00288-3 CrossRefGoogle Scholar
  22. Wang J, Holmlid L (2002) Rydberg Matter clusters of hydrogen (H2)N* with well defined kinetic energy release observed by neutral time-of-flight. Chem Phys 277:201–210. doi: 10.1016/S0301-0104(02)00303-8 CrossRefGoogle Scholar
  23. Yarygin VI, Sidel’nikov VN, Kasikov II, Mironov VS, Tulin SM (2003) Experimental study on the possibility of formation of a condensate of excited states in a substance (Rydberg Matter). JETP Lett 77:280–284. doi: 10.1134/1.1577757 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Atmospheric Science, Department of ChemistryUniversity of GothenburgGöteborgSweden

Personalised recommendations