Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 247–259 | Cite as

Generation of mixed metallic nanoparticles from immiscible metals by spark discharge

  • N. S. Tabrizi
  • Q. Xu
  • N. M. van der Pers
  • A. Schmidt-OttEmail author
Research Paper


Using a spark discharge system, we synthesized Ag-Cu, Pt–Au and Cu-W mixed particles a few nanometers in size. These combinations have miscibility gaps in the bulk form. The microsecond sparks between electrodes consisting of the respective materials, form a vapour cloud. Very fast quenching of the mixed vapour results in the formation of nanoparticles. To investigate the morphology, size, composition and structure of the particles, TEM, XRD analyses and EDS elemental mapping were performed on the samples. The average compositions were measured by ICP and the specific surface areas were determined by the BET. Our method produces Ag-Cu and Au–Pt mixed crystalline phases that do not exist in macroscopic samples. For Cu-W, alloying is not observed, and the metals are mixed on a scale of about 1 nm.


Nanoparticles Immiscible metals Spark discharge Synthesis method 



The authors would like to express their gratitude to Miren Echave Elustondo for carrying out particle size distribution measurements and Sander Brouwer for his assistance in BET measurements. The Project is partially funded by the Delft Center of Sustainable Energy (DISE).


  1. Almtoft Pagh K, Ejsing AM, Bottiger J, Chevallier J, Schell N, MArtins RMS (2007) The dependence of the nanostructure of magnetron sputtered Cu-Ag alloy films on composition and temperature. J Mater Res 22(4):1018–1023. doi: 10.1557/jmr.2007.0121 CrossRefADSGoogle Scholar
  2. Barret CS et al (1996) The structure of the metals. McGraw-Hill, New York, p 372Google Scholar
  3. Birringer R (1989) Nanocrystalline materials. Mater Sci Eng A117:33–43Google Scholar
  4. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298. doi: 10.1103/PhysRevA.13.2287 CrossRefADSGoogle Scholar
  5. Cagran C, Wilthan B, Pottlacher G (2006) Enthalpy, heat of fusion and specific electrical resistivity of pure silver, pure copper and the binary Ag-28Cu alloy. Thermochim Acta 445:104–110. doi: 10.1016/j.tca.2005.08.014 CrossRefGoogle Scholar
  6. Ceylan A, Jastrzembski K, Ismat Shah S (2006) Enhanced Solubility Ag-Cu Nanoparticles and Their Thermal Transport Properties. Metall Mater Trans A 37A:2033–2038. doi: 10.1007/BF02586123 CrossRefGoogle Scholar
  7. Christensen A, Stoltze P, Norskov JK (1995) Size dependence of phase separation in small bimetallic clusters. J Phys Condens Matter 7:1047–1057. doi: 10.1088/0953-8984/7/6/008 CrossRefADSGoogle Scholar
  8. Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, Au-Pt, in sol–gel derived silicates. J Colloid Interface Sci 290:117–129. doi: 10.1016/j.jcis.2005.04.034 CrossRefPubMedGoogle Scholar
  9. Ding F, Rosen A, Bolton K (2004) Size dependence of the coalescence and melting of iron clusters: a molecular-dynamics study. Phys Rev B 70:075416. doi: 10.1103/PhysRevB.70.075416 CrossRefADSGoogle Scholar
  10. Dirks AG, van den Broek JJ (1985) Metastable solid solution in vapour deposited Cu-Cr, Cu-Mo, and Cu-W thin films. J Vac Sci Technol A 3(6):2618–2622. doi: 10.1116/1.572799 CrossRefADSGoogle Scholar
  11. Gladyszewski G, Goudeau P, Naudon A, Jaouen C, Pacaud J (1993) Modification of Cu-W superlattices by irradiation. Appl Surf Sci 65/66:3–28. doi: 10.1016/0169-4332(93)90630-T CrossRefGoogle Scholar
  12. Gray EW, Pharney JR (1974) Electrode erosion by particle ejection in low-current arcs. J Appl Phys 45(2):667–671. doi: 10.1063/1.1663300 CrossRefADSGoogle Scholar
  13. Hajra JP, Acharya S (2004) Thermodynamics and phase equilibria involving nano phases in the Cu-Ag system. J Nanosci Nanotechnol 4(7):899–906. doi: 10.1166/jnn.2004.088 CrossRefPubMedGoogle Scholar
  14. Haubold T, Gertsman V (1992) On the structure and properties of nanostructured copper-tungsten alloys. Nanostructured Mater 1:303–312. doi: 10.1016/0965-9773(92)90037-X CrossRefGoogle Scholar
  15. Hongjing J, Moon K, Wong CP (2005) Synthesis of Ag-Cu alloy nanoparticles for lead-free interconnect materials. IEEE, 0-7803-9085-7Google Scholar
  16. Kang H-K, Bong Kang S (2003) Tungsten/copper composite deposits produced by a cold spray. Scr Mater 49:1169–1174. doi: 10.1016/j.scriptamat.2003.08.023 CrossRefGoogle Scholar
  17. Koch CC (2007) Nanostructured materials. William Andrew, ScotlandGoogle Scholar
  18. Lahiri D, Bunker B, Mishra B (2005) Bimetallic Pt-Ag and Pd-Ag nanoparticles. J Appl Phys 97:094304. doi: 10.1063/1.1888043 CrossRefADSGoogle Scholar
  19. Liang LH, Yang GW, Li B (2005) Size-dependent formation enthalpy of nanocompounds. J Phys Chem B 109:16081–16083. doi: 10.1021/jp0528461 CrossRefPubMedGoogle Scholar
  20. Luo J, Maye MM, Petkov V, Kariuki NN, Wang LY, Njoki P, Mott D, Lin Y, Zhong C-J (2005) Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions. Chem Mater 17:3086–3091CrossRefGoogle Scholar
  21. Massalski TB, Okamito H (1990) Binary alloy phase diagrams, vol 2. ASM International, Metals Park, OhioGoogle Scholar
  22. Mezey LZ, Giber J (1982) The surface free energies of solid chemical elements: calculation from internal free enthalpies of atomization. Jpn J Appl Phys 21(11):1569–1571. doi: 10.1143/JJAP.21.1569 CrossRefADSGoogle Scholar
  23. Najafabadi R, Srolovitz DJ (1993) Thermodynamic properties of metastable Ag-Cu alloys. J Appl Phys 74(5):3144–3149. doi: 10.1063/1.354582 CrossRefADSGoogle Scholar
  24. Ouyang G, Wang CX, Li SW, Zhou X, Yang GW (2006a) Size-dependent thermodynamic criterion for the thermal stability of binary immiscible metallic multilayers. Appl Surf Sci 252(11):3993–3996. doi: 10.1016/j.apsusc.2005.09.043 CrossRefADSGoogle Scholar
  25. Ouyang G, Tan X, Wang CX, Yang GW (2006b) Charge-induced transition between miscible and immiscible in nanometer-sized alloying particles. Chem Phys Lett 423:143–146. doi: 10.1016/j.cplett.2006.03.062 CrossRefADSGoogle Scholar
  26. Patel K, Kapoor S, Dave DP, Mukherjee T (2005) Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J Chem Sci 117(4):311–316. doi: 10.1007/BF02708443 CrossRefGoogle Scholar
  27. Predel B, Madelung O (1998) Phase equilibria, crystallographic and thermodynamic data of binary alloys. Springer, BerlinGoogle Scholar
  28. Radic N, Stubicar M (1998) Microhardness properties of Cu-W amorphous thin films. J Mater Sci 33:3401–3405. doi: 10.1023/A:1013201817300 CrossRefGoogle Scholar
  29. Raghu T, Sundaresan R, Ramakrishnan P, Rama Mohan TR (2001) Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying. Mater Sci Eng A 304–306:438–441Google Scholar
  30. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San DiegoGoogle Scholar
  31. Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642. doi: 10.1016/0021-8502(88)90215-7 CrossRefGoogle Scholar
  32. Shu XK, Jiang P, Che JG (2003) Surface alloying of immiscible metals induced by surface state shift. Surf Sci 545:199–210. doi: 10.1016/j.susc.2003.08.042 CrossRefADSGoogle Scholar
  33. Tabrizi NS, Xu Q, van der Pers NM, Lafont U, Schmidt-Ott A (2008) Synthesis of mixed metallic nanoparticles by spark discharge. J Nanopart Res. doi: 10.1007/s11051-008-9568-8
  34. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2009) Generation of nanoparticles by spark discharge. J Nanopart Res 11:315–332. doi: 10.1007/s11051-008-9407-y CrossRefGoogle Scholar
  35. Wu M-L, Lai L-B (2004) Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemultions. Colloids Surf A Physicochem Eng Asp 244:149–157. doi: 10.1016/j.colsurfa.2004.06.027 CrossRefGoogle Scholar
  36. Xiao S, Hu W, Luo W, Wu Y, Li X, Deng H (2006) Size effect on alloying ability and phase stability of immiscible bimetallic nanoparticles. Eur Phys J B 54:479–484. doi: 10.1140/epjb/e2007-00018-6 CrossRefADSGoogle Scholar
  37. Zeng J, Yang J, Yang Lee J, Zhou W (2006) Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J Phys Chem B 110:24606–24611. doi: 10.1021/jp0640979 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • N. S. Tabrizi
    • 1
  • Q. Xu
    • 2
  • N. M. van der Pers
    • 3
  • A. Schmidt-Ott
    • 1
    Email author
  1. 1.Nanostructured Materials, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
  2. 2.Laboratory for Material Science, National Centre for HREMDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of Materials Science and Engineering, Faculty of 3mEDelft University of TechnologyDelftThe Netherlands

Personalised recommendations