Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles

  • Avinash Ingle
  • Mahendra RaiEmail author
  • Aniket Gade
  • Manisha Bawaskar
Research Paper


We report extracellular biosynthesis of silver nanoparticles by Fusarium solani (USM-3799), a phytopathogen causing disease in onion, when challenged with 1 mM silver nitrate (AgNO3). The formation of nanoparticles was characterized by visual observation followed by UV–Vis spectrophotometric analysis, which showed a peak at about 420 nm, which is very specific for silver nanoparticles. Further analysis carried out by Fourier Transform Infrared Spectroscopy (FTIR), provides evidence for the presence of proteins as capping agent, which helps in increasing the stability of the synthesized silver nanoparticles. Transmission Electron Microscopy (TEM) investigations confirmed that silver nanoparticles were formed. The synthesized silver nanoparticles were found to be polydispersed, spherical in the range of 5–35 nm with average diameter of 16.23 nm. Extracellular synthesis of nanoparticles could be highly advantageous from the point of view of synthesis in large quantities and easy downstream processing.


Extracellular Fusarium solani TEM Eco-friendly Downstream processing Antimicrobial agent Nanobiotechnology 



We thank Prof. Carsten Sönnichsen and Dr. Sebastien Pierrat, Johannes Gutenberg University of Mainz, Germany for their help in TEM analysis and we are also thankful to Prof. Baharuddin Salleh, University Sains Malaysia, Malaysia for confirming the identification of F. solani.


  1. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry MJ (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by fungus Fusarium oxysporum. Am Chem Soc 124:12108–12109. doi: 10.1021/ja027296o CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318. doi: 10.1016/S0927-7765(02)00174-1 CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodispersed gold nanoparticles by novel extermophillic actinomycetes, Thermomonospora sp. Langmuir 19:3550–3553. doi: 10.1021/la026772l CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003c) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828. doi: 10.1088/0957-4484/14/7/323 CrossRefADSGoogle Scholar
  5. Anilkumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445. doi: 10.1007/s10529-006-9256-7 CrossRefGoogle Scholar
  6. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305. doi: 10.1039/b407904c CrossRefGoogle Scholar
  7. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15:2583–2589. doi: 10.1039/b503008k CrossRefGoogle Scholar
  8. Bhainsa KC, D’souza SK (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi: 10.1016/j.colsurfb.2005.11.026 CrossRefPubMedGoogle Scholar
  9. Cao G (ed) (2004) Nanostructures and nanomaterials: synthesis, properties, and applications. Imperial College Press, LondonGoogle Scholar
  10. Dickson DPE (1999) Nanostructured magnetism in living systems. J Magn Mater 203:46–49. doi: 10.1016/S0304-8853(99)00178-X CrossRefADSGoogle Scholar
  11. Duran N, Marcato PD, Alves OL, D’Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14. doi: 10.1186/1477-3155-3-8 CrossRefGoogle Scholar
  12. Frankel RB, Blakemore RP (1991) Iron biominerals. Plenum, New YorkGoogle Scholar
  13. Gade AK, Bonde PP, Ingle AP, Marcato P, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:1–5. doi: 10.1166/jbmb.2008.204 CrossRefGoogle Scholar
  14. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic. Langmuir 17:1674–1679CrossRefGoogle Scholar
  15. Hayat MA (1989) Colloidal gold: principles, methods and applications. Academic Press, CaliforniaGoogle Scholar
  16. Henglein A (1993) Physicochemical properties of small metal particles in solution: ‘‘microelectrode’’ reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem B 97:5457–5471. doi: 10.1021/j100123a004 CrossRefGoogle Scholar
  17. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147. doi: 10.1007/BF00381789 CrossRefPubMedGoogle Scholar
  18. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104–105115. doi: 10.1088/0957-4484/18/10/105104 CrossRefADSGoogle Scholar
  19. Husseiny MI, Ei-Aziz MA, Badr Y, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta [A] 67:1003–1006. doi: 10.1016/j.saa.2006.09.028 CrossRefGoogle Scholar
  20. Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144. doi: 10.2174/157341308784340804 CrossRefADSGoogle Scholar
  21. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614. doi: 10.1073/pnas.96.24.13611 CrossRefPubMedADSGoogle Scholar
  22. Kroger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132. doi: 10.1126/science.286.5442.1129 CrossRefPubMedGoogle Scholar
  23. Luo L, Yu S, Qian S, Zhou T (2005) Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanoscale by a facial solution approach. J Am Chem Soc 127:2822–2823. doi: 10.1021/ja0428154 CrossRefPubMedGoogle Scholar
  24. Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505. doi: 10.1038/365499a0 CrossRefADSGoogle Scholar
  25. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318. doi: 10.1038/382313a0 CrossRefADSGoogle Scholar
  26. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-XCrossRefPubMedGoogle Scholar
  27. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298. doi: 10.1021/cg0255164 CrossRefGoogle Scholar
  28. Oliver S, Kupermann A, Coombs N, Lough A, Ozin GA (1995) Lamellar luminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47–50. doi: 10.1038/378047a0 CrossRefADSGoogle Scholar
  29. Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253. doi: 10.1021/jp063826h CrossRefPubMedGoogle Scholar
  30. Pandey G, Srivastava SK (2006) A novel synthetic method for the preparation of CuS, and CdS nanochains. Synthesis and reactivity in inorganic, metal organic and nano metal. Chemistry (Easton) 36:663–666Google Scholar
  31. Riddin T, Gericke M, Whiteley C (2006) Analysis of inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489. doi: 10.1088/0957-4484/17/14/021 CrossRefPubMedADSGoogle Scholar
  32. Sastry M, Mayya KS, Bandyopadhyay K (1997) pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloid Surf A 127:221–228. doi: 10.1016/S0927-7757(97)00087-3 CrossRefGoogle Scholar
  33. Sastry M, Patil V, Sainkar SR (1998) Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem B 102:1404–1410. doi: 10.1021/jp9719873 CrossRefGoogle Scholar
  34. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  35. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefPubMedGoogle Scholar
  36. Seifert K (1996) Fusarium interactive key. Agriculture and Agri Food Canada, pp 1–65Google Scholar
  37. Shiv Shankar S, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631. doi: 10.1021/bp034070w CrossRefPubMedGoogle Scholar
  38. Shiv Shankar S, Rai A, Ahmad A, Sastry MJ (2004) Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using neem. J Colloid Interface Sci 275:496–502. doi: 10.1016/j.jcis.2004.03.003 CrossRefPubMedGoogle Scholar
  39. Shiying H, Zhirui G, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987. doi: 10.1016/j.matlet.2007.01.018 CrossRefGoogle Scholar
  40. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101. doi: 10.1016/j.colsurfb.2007.01.010 CrossRefPubMedGoogle Scholar
  41. Spring H, Schleifer KH (1995) Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147–153Google Scholar
  42. Sushil KS, Mamta P (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509Google Scholar
  43. Vigneshwaram N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59. doi: 10.1016/j.colsurfb.2006.07.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Avinash Ingle
    • 1
  • Mahendra Rai
    • 1
    Email author
  • Aniket Gade
    • 1
  • Manisha Bawaskar
    • 1
  1. 1.Sant Gadge Baba Amravati UniversityAmravatiIndia

Personalised recommendations