Laser-induced growth and reformation of gold and silver nanoparticles
- 192 Downloads
- 8 Citations
Abstract
The sizes, shapes, and growth rates of gold and silver nanoparticles stabilized with polyvinylpyrrolidone in water can be controlled by using picosecond laser pulses. The nucleation of small metal clusters formed with NaBH4 addition to produce nanoparticles takes two months with aging but 30 min with laser irradiation. Laser pulses can also induce nanoparticles to have narrow size and shape distribution or to undergo aggregation into much larger particles. The latter process is more likely found when the metal is silver or the irradiation wavelength is short. Laser-induced growth and shape transformation processes are explained in terms of BH4 − depletion, metal fusion, and electron ejection followed by disintegration.
Keywords
Nucleation Optical fabrication Picosecond pulses Polyvinylpyrrolidone Shape transformation ColloidsNotes
Acknowledgments
This work was supported by the Nano R&D Program of the Korea Science and Engineering Foundation (KOSEF) funded by the Ministry of Education, Science, and Technology (M10703000871–07M0300–87110). We are also thankful to the Center for Space-Time Molecular Dynamics of KOSEF (R11–2007–012–01002–0) for partial support while S.J.K. acknowledges the BK21 Scholarship as well.
References
- Ah CS, Han HS, Km K, Jang D-J (2000a) Photofragmentation dynamics of n-dodecanethiol-derivatized silver nanoparticles in cyclohexane. J Phys Chem B 104:8153–8159. doi: 10.1021/jp0017083 CrossRefGoogle Scholar
- Ah CS, Han HS, Kim K, Jang D-J (2000b) Phototransformation of alkanethiol-derivatized noble metal nanoparticles. Pure Appl Chem 72:91–99. doi: 10.1351/pac200072010091 CrossRefGoogle Scholar
- Ah CS, Hong SD, Jang D-J (2001) Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B 105:7871–7873. doi: 10.1021/jp0113578 CrossRefGoogle Scholar
- Ah CS, Kim SJ, Jang D-J (2006) Laser-induced mutual transposition of the core and the shell of a Au@Pt nanosphere. J Phys Chem B 110:5486–5489. doi: 10.1021/jp0568125 CrossRefPubMedGoogle Scholar
- Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712. doi: 10.1021/jp962922n CrossRefGoogle Scholar
- An J, Tang B, Ning X, Zhou J, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2007) Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. J Phys Chem C 111:18055–18059. doi: 10.1021/jp0745081 CrossRefGoogle Scholar
- Bonacina L, Callegari A, Bonati C, van Mourik F, Chergui M (2006) Time-resolved photodynamics of triangular-shaped silver nanoplates. Nano Lett 6:7–10. doi: 10.1021/nl052131+ CrossRefPubMedADSGoogle Scholar
- Bosbach J, Martin D, Stietz F, Wenzel T, Träger F (1999) Laser-based method for fabricating monodisperse metallic nanoparticles. Appl Phys Lett 74:2605–2607. doi: 10.1063/1.123911 CrossRefADSGoogle Scholar
- Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568. doi: 10.1021/nl034757a CrossRefADSGoogle Scholar
- Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539. doi: 10.1021/jp9925334 CrossRefGoogle Scholar
- Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104:11708–11718. doi: 10.1021/jp002438r CrossRefGoogle Scholar
- Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903. doi: 10.1126/science.1066541 CrossRefPubMedADSGoogle Scholar
- Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744. doi: 10.1021/jp0209289 CrossRefGoogle Scholar
- Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128. doi: 10.1021/jp980009b CrossRefGoogle Scholar
- Kim MR, Jang D-J (2008) One-step fabrication of well-defined hollow CdS nanoboxes. Chem Commun (Camb) 5218–5220. doi: 10.1039/b809807g
- Kim MR, Kang YM, Jang D-J (2007a) Synthesis and characterization of highly luminescent CdS@ZnS core-shell nanorods. J Phys Chem C 103:18507–18511. doi: 10.1021/jp075218n CrossRefGoogle Scholar
- Kim SJ, Ah CS, Jang D-J (2007b) Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles. Adv Mater 19:1064–1068. doi: 10.1002/adma.200601646 CrossRefGoogle Scholar
- Kurihara K, Kizling J, Stenius P, Fendler JH (1983) Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions. J Am Chem Soc 105:2574–2579. doi: 10.1021/ja00347a011 CrossRefGoogle Scholar
- Link S, El-Sayed MA (1999) Spectal properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426. doi: 10.1021/jp9917648 CrossRefGoogle Scholar
- Link S, Burda C, Nikoobakht B, El-Sayed MA (1999a) How long does it take to melt a gold nanorods? A femtosecond pump-probe absorption spectroscopic study. Chem Phys Lett 315:12–18. doi: 10.1016/S0009-2614(99)01214-2 CrossRefADSGoogle Scholar
- Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999b) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103:1165–1170. doi: 10.1021/jp983141k CrossRefGoogle Scholar
- Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163. doi: 10.1021/jp000679t CrossRefGoogle Scholar
- McLellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017. doi: 10.1021/nl070157q CrossRefPubMedADSGoogle Scholar
- Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi: 10.1021/la9502711 CrossRefGoogle Scholar
- Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556. doi: 10.1038/nature06508 CrossRefPubMedADSGoogle Scholar
- Pucci A, Bernabò M, Elvati P, Meza LI, Galembeck F, Leite CAP, Tirelli N, Ruggeri G (2006) Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. J Mater Chem 16:1058–1066. doi: 10.1039/b511198f CrossRefGoogle Scholar
- Sepahvand R, Adeli M, Astinchap B, Kabiri R (2008) New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. J Nanopart Res 10:1309–1318. doi: 10.1007/s11051-008-9411-2 CrossRefGoogle Scholar
- Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. doi: 10.1126/science.1077229 CrossRefPubMedADSGoogle Scholar
- Sun Z, Wang C, Yang J, Zhao B, Lombardi JR (2008) Nanoparticle metal–semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J Phys Chem C 112:6093–6098. doi: 10.1021/jp711240a CrossRefGoogle Scholar
- Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232. doi: 10.1021/jp983503o CrossRefGoogle Scholar
- Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735. doi: 10.1126/science.1140484 CrossRefPubMedADSGoogle Scholar
- Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430. doi: 10.1021/la00022a011 CrossRefGoogle Scholar
- Wang ZL, Petroski JM, Green TC, El-Sayed MA (1998) Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102:6145–6151. doi: 10.1021/jp981594j CrossRefGoogle Scholar
- Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745–1749. doi: 10.1002/adma.200600675 CrossRefGoogle Scholar
- Xue C, Mirkin CA (2007) pH-Switchable silver nanoprism growth pathways. Angew Chem Int Ed 46:2036–2038. doi: 10.1002/anie.200604637 CrossRefGoogle Scholar