Laser-induced growth and reformation of gold and silver nanoparticles

Research Paper


The sizes, shapes, and growth rates of gold and silver nanoparticles stabilized with polyvinylpyrrolidone in water can be controlled by using picosecond laser pulses. The nucleation of small metal clusters formed with NaBH4 addition to produce nanoparticles takes two months with aging but 30 min with laser irradiation. Laser pulses can also induce nanoparticles to have narrow size and shape distribution or to undergo aggregation into much larger particles. The latter process is more likely found when the metal is silver or the irradiation wavelength is short. Laser-induced growth and shape transformation processes are explained in terms of BH4 depletion, metal fusion, and electron ejection followed by disintegration.


Nucleation Optical fabrication Picosecond pulses Polyvinylpyrrolidone Shape transformation Colloids 



This work was supported by the Nano R&D Program of the Korea Science and Engineering Foundation (KOSEF) funded by the Ministry of Education, Science, and Technology (M10703000871–07M0300–87110). We are also thankful to the Center for Space-Time Molecular Dynamics of KOSEF (R11–2007–012–01002–0) for partial support while S.J.K. acknowledges the BK21 Scholarship as well.


  1. Ah CS, Han HS, Km K, Jang D-J (2000a) Photofragmentation dynamics of n-dodecanethiol-derivatized silver nanoparticles in cyclohexane. J Phys Chem B 104:8153–8159. doi: 10.1021/jp0017083 CrossRefGoogle Scholar
  2. Ah CS, Han HS, Kim K, Jang D-J (2000b) Phototransformation of alkanethiol-derivatized noble metal nanoparticles. Pure Appl Chem 72:91–99. doi: 10.1351/pac200072010091 CrossRefGoogle Scholar
  3. Ah CS, Hong SD, Jang D-J (2001) Preparation of AucoreAgshell nanorods and characterization of their surface plasmon resonances. J Phys Chem B 105:7871–7873. doi: 10.1021/jp0113578 CrossRefGoogle Scholar
  4. Ah CS, Kim SJ, Jang D-J (2006) Laser-induced mutual transposition of the core and the shell of a Au@Pt nanosphere. J Phys Chem B 110:5486–5489. doi: 10.1021/jp0568125 CrossRefPubMedGoogle Scholar
  5. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101:3706–3712. doi: 10.1021/jp962922n CrossRefGoogle Scholar
  6. An J, Tang B, Ning X, Zhou J, Xu S, Zhao B, Xu W, Corredor C, Lombardi JR (2007) Photoinduced shape evolution: from triangular to hexagonal silver nanoplates. J Phys Chem C 111:18055–18059. doi: 10.1021/jp0745081 CrossRefGoogle Scholar
  7. Bonacina L, Callegari A, Bonati C, van Mourik F, Chergui M (2006) Time-resolved photodynamics of triangular-shaped silver nanoplates. Nano Lett 6:7–10. doi: 10.1021/nl052131+ CrossRefPubMedADSGoogle Scholar
  8. Bosbach J, Martin D, Stietz F, Wenzel T, Träger F (1999) Laser-based method for fabricating monodisperse metallic nanoparticles. Appl Phys Lett 74:2605–2607. doi: 10.1063/1.123911 CrossRefADSGoogle Scholar
  9. Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568. doi: 10.1021/nl034757a CrossRefADSGoogle Scholar
  10. Henglein A, Giersig M (1999) Formation of colloidal silver nanoparticles: capping action of citrate. J Phys Chem B 103:9533–9539. doi: 10.1021/jp9925334 CrossRefGoogle Scholar
  11. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J Phys Chem B 104:11708–11718. doi: 10.1021/jp002438r CrossRefGoogle Scholar
  12. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903. doi: 10.1126/science.1066541 CrossRefPubMedADSGoogle Scholar
  13. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744. doi: 10.1021/jp0209289 CrossRefGoogle Scholar
  14. Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128. doi: 10.1021/jp980009b CrossRefGoogle Scholar
  15. Kim MR, Jang D-J (2008) One-step fabrication of well-defined hollow CdS nanoboxes. Chem Commun (Camb) 5218–5220. doi:  10.1039/b809807g
  16. Kim MR, Kang YM, Jang D-J (2007a) Synthesis and characterization of highly luminescent CdS@ZnS core-shell nanorods. J Phys Chem C 103:18507–18511. doi: 10.1021/jp075218n CrossRefGoogle Scholar
  17. Kim SJ, Ah CS, Jang D-J (2007b) Optical fabrication of hollow platinum nanospheres by excavating the silver core of Ag@Pt nanoparticles. Adv Mater 19:1064–1068. doi: 10.1002/adma.200601646 CrossRefGoogle Scholar
  18. Kurihara K, Kizling J, Stenius P, Fendler JH (1983) Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions. J Am Chem Soc 105:2574–2579. doi: 10.1021/ja00347a011 CrossRefGoogle Scholar
  19. Link S, El-Sayed MA (1999) Spectal properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426. doi: 10.1021/jp9917648 CrossRefGoogle Scholar
  20. Link S, Burda C, Nikoobakht B, El-Sayed MA (1999a) How long does it take to melt a gold nanorods? A femtosecond pump-probe absorption spectroscopic study. Chem Phys Lett 315:12–18. doi: 10.1016/S0009-2614(99)01214-2 CrossRefADSGoogle Scholar
  21. Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA (1999b) Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A 103:1165–1170. doi: 10.1021/jp983141k CrossRefGoogle Scholar
  22. Link S, Burda C, Nikoobakht B, El-Sayed MA (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163. doi: 10.1021/jp000679t CrossRefGoogle Scholar
  23. McLellan JM, Li Z-Y, Siekkinen AR, Xia Y (2007) The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017. doi: 10.1021/nl070157q CrossRefPubMedADSGoogle Scholar
  24. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi: 10.1021/la9502711 CrossRefGoogle Scholar
  25. Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556. doi: 10.1038/nature06508 CrossRefPubMedADSGoogle Scholar
  26. Pucci A, Bernabò M, Elvati P, Meza LI, Galembeck F, Leite CAP, Tirelli N, Ruggeri G (2006) Photoinduced formation of gold nanoparticles into vinyl alcohol based polymers. J Mater Chem 16:1058–1066. doi: 10.1039/b511198f CrossRefGoogle Scholar
  27. Sepahvand R, Adeli M, Astinchap B, Kabiri R (2008) New nanocomposites containing metal nanoparticles, carbon nanotube and polymer. J Nanopart Res 10:1309–1318. doi: 10.1007/s11051-008-9411-2 CrossRefGoogle Scholar
  28. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179. doi: 10.1126/science.1077229 CrossRefPubMedADSGoogle Scholar
  29. Sun Z, Wang C, Yang J, Zhao B, Lombardi JR (2008) Nanoparticle metal–semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J Phys Chem C 112:6093–6098. doi: 10.1021/jp711240a CrossRefGoogle Scholar
  30. Takami A, Kurita H, Koda S (1999) Laser-induced size reduction of noble metal particles. J Phys Chem B 103:1226–1232. doi: 10.1021/jp983503o CrossRefGoogle Scholar
  31. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735. doi: 10.1126/science.1140484 CrossRefPubMedADSGoogle Scholar
  32. Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430. doi: 10.1021/la00022a011 CrossRefGoogle Scholar
  33. Wang ZL, Petroski JM, Green TC, El-Sayed MA (1998) Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J Phys Chem B 102:6145–6151. doi: 10.1021/jp981594j CrossRefGoogle Scholar
  34. Washio I, Xiong Y, Yin Y, Xia Y (2006) Reduction by the end groups of poly(vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv Mater 18:1745–1749. doi: 10.1002/adma.200600675 CrossRefGoogle Scholar
  35. Xue C, Mirkin CA (2007) pH-Switchable silver nanoprism growth pathways. Angew Chem Int Ed 46:2036–2038. doi: 10.1002/anie.200604637 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of ChemistrySeoul National UniversitySeoulSouth Korea
  2. 2.Electronics and Telecommunications Research InstituteDaejeonSouth Korea

Personalised recommendations