Journal of Nanoparticle Research

, Volume 11, Issue 8, pp 2013–2022 | Cite as

Adhesion of chemically and electrostatically bound gold nanoparticles to a self-assembled silane monolayer investigated by atomic force volume spectroscopy

  • Benjamin S. Flavel
  • Matthew R. Nussio
  • Jamie S. Quinton
  • Joseph G. Shapter
Research Paper

Abstract

The adhesion of gold nanoparticles either electrostatically or chemically attached to a substrate has been probed using AFM operating in force spectroscopy mode. A monolayer of –NH2 terminated 3-aminopropyltriethoxysilane or –SH terminated 3-mercaptopropyltrimethoxysilane was self-assembled onto a p-type silicon (100) substrate. Each silane monolayer provided the point of attachment for citrate stabilised gold colloid nanoparticles. In the case of the –NH2 terminated layer gold colloid assembly was driven by the electrostatic attraction between the negative, citrate-capped, gold nanoparticles and a partially protonated amine layer. In the case of the –SH terminated regions, well-known gold–thiol chemistry was used to chemically attach the nanoparticles. An atomic force microscope tip was chemically modified with 3-mercaptopropyltrimethoxysilane and scanned across each surface, where the cantilever deflection was measured at each x, y pixel of the image to create an array of adhesion force curves. This has allowed an unprecedented nanoscale characterisation of the adhesion force central to two common surface attachment methods of gold colloid nanoparticles, providing useful insights into the stability of nanoscale constructs.

Keywords

Silicon Gold Nanoparticle Atomic force microscopy Force volume Force spectroscopy Colloids Surface phenomena 

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933. doi:10.1103/PhysRevLett.56.930 CrossRefPubMedADSGoogle Scholar
  2. Calleja M, Anguita J, Garcia R, Birkelund K, Perez-Murano F, Dagata JA (1999) Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication. Nanotechnology 10:34–38. doi:10.1088/0957-4484/10/1/008 CrossRefADSGoogle Scholar
  3. Chumanov G, Sokolov K, Gregory BW, Cotton TM (1995) Colloidal metal films as a substrate for surface enhanced spectroscopy. J Phys Chem 99:9466–9477. doi:10.1021/j100023a025 CrossRefGoogle Scholar
  4. Delamarche E, Michel B, Kang H, Gerber C (1994) Thermal stability of self-assembled monolayers. Langmuir 10:4103–4108. doi:10.1021/la00023a033 CrossRefGoogle Scholar
  5. Doron A, Katz E, Willner I (1995) Organisation of Au colloids as monolayer films onto ITO glass surfaces: application of the metal colloid films as base interfaces to construct redox active monolayers. Langmuir 11:1313–1317. doi:10.1021/la00004a044 CrossRefGoogle Scholar
  6. Flavel BS, Yu J, Shapter JG, Quinton JS (2007a) Patterned attachment of carbon nanotubes to silane modified silicon. Carbon 45:2551–2558. doi:10.1016/j.carbon.2007.08.026 CrossRefGoogle Scholar
  7. Flavel BS, Yu J, Shapter JG, Quinton JS (2007b) Patterned ferrocenemethanol modified carbon nanotube electrodes on silane modified silicon. J Mater Chem 17:4757–4761. doi:10.1039/b716284g CrossRefGoogle Scholar
  8. Flavel BS, Yu J, Ellis AV, Quinton JS, Shapter JG (2008a) Solution chemistry approach to fabricate vertically aligned carbon nanotubes on gold wires: towards vertically integrated electronics. Nanotechnology 19:445301. doi:10.1088/0957-4484/19/44/445301 CrossRefADSGoogle Scholar
  9. Flavel BS, Yu J, Shapter JG, Quinton JS (2008b) Patterned polyaniline & carbon nanotube/polyaniline composites on silicon. Soft Matter. doi:10.1039/b809609k Google Scholar
  10. Gaboriaud F, Parcha BS, Gee ML, Holden JA, Strugnell RA (2008) Spatially resolved force spectroscopy of bacterial surfaces using force volume imaging. Colloids Surf B Biointerfaces 62:206–213. doi:10.1016/j.colsurfb.2007.10.004 CrossRefPubMedGoogle Scholar
  11. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196. doi:10.1021/cr030076o CrossRefPubMedGoogle Scholar
  12. Gavoille J, Takadoum J (2002) Study of surface forces dependence on pH by atomic force microscopy. J Colloid Interface Sci 250:104–107. doi:10.1006/jcis.2002.8327 CrossRefPubMedGoogle Scholar
  13. Guan F, Chen M, Wu Yang, Wang J, Yong S, Xue Q (2005) Fabrication of patterned gold microstructures by selective electroless plating. Appl Surf Sci 240:24–27. doi:10.1016/j.apsusc.2004.06.050 CrossRefADSGoogle Scholar
  14. Haynes CL, Van Duyne RP (2001) Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependant nanoparticle optics. J Phys Chem B 105:5599–5611. doi:10.1021/jp010657m CrossRefGoogle Scholar
  15. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:13705–13713. doi:10.1063/1.2432410 CrossRefADSGoogle Scholar
  16. Horn AB, Russell DA, Shorthouse LJ, Simpson TRE (1996) Ageing of alkanethiol self-assembled monolayers. J Chem Soc, Faraday Trans 92:4759–4762. doi:10.1039/ft9969204759 CrossRefGoogle Scholar
  17. Hrapovic S, Liu Y, Enright G, Bensebaa F, Luong JHT (2003) New strategy for preparing thin gold films on modified glass surfaces by electroless deposition. Langmuir 19:3958–3965. doi:10.1021/la0269199 CrossRefGoogle Scholar
  18. Jin Y, Kang X, Song Y, Zhang B, Cheng G, Dong S (2001) Controlled nucleation and growth of surface-confined gold nanoparticles on a (3-aminopropyl)trimethoxysilane-modified glass slide: a strategy for SPR substrates. Anal Chem 73:2843–2849. doi:10.1021/ac001207d CrossRefPubMedGoogle Scholar
  19. Keating CD, Musick MD, Keefe MH, Natan MJ (1999) Kinetics and thermodynamics of Au colloid monolayer self-assembly. J Chem Educ 76:949–955CrossRefGoogle Scholar
  20. Kim H, Arakawa H, Osada T, Ikai A (2003) Quantification of cell adhesion force with AFM: distribution of vitronectin receptors on a living MC3T3-E1 cell. Ultramicroscopy 97:359–363. doi:10.1016/S0304-3991(03)00061-5 CrossRefPubMedGoogle Scholar
  21. Li Q, Zheng J, Liu Z (2003) Site-selective assemblies of gold nanoparticles on an AFM tip defined silicon template. Langmuir 19:166–171. doi:10.1021/la0259149 CrossRefGoogle Scholar
  22. Lim RYH, Koser J, Huang N, Schwarz-Herion K, Aebi U (2007) Nanomechanical interactions of phenylalanine-glycine nucleoporins studied by single molecule force-volume spectroscopy. J Struct Biol 159:277–289. doi:10.1016/j.jsb.2007.01.018 CrossRefPubMedGoogle Scholar
  23. Liu J, Zhang L, Gu N, Ren J, Wu Y, Lu Z, Mao P, Chen D (1998) Fabrication of colloidal gold micro-patterns using photolithographic self-assembled monolayers as templates. Thin Solid Films 327–329:176–179. doi:10.1016/S0040-6090(98)00623-3 CrossRefGoogle Scholar
  24. Liu S, Maoz R, Schmid G, Sagiv J (2002) Template guided self-assembly of [Au55] clusters on nanolithographically defined monolayer patterns. Nano Lett 2:1055–1060. doi:10.1021/nl025659c CrossRefADSGoogle Scholar
  25. Liu S, Maoz R, Sagiv J (2004) Planned nanostructures of colloidal gold via self-assembly on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality. Nano Lett 4:845–851. doi:10.1021/nl049755k CrossRefADSGoogle Scholar
  26. Ludwig M, Dettmann W, Gaub HE (1997) Atomic force microscopy imaging contrast based on molecular recognition. Biophys J 72:445–448CrossRefPubMedGoogle Scholar
  27. Mallick SB, Ivanisevic A (2005) Study of the morphological and adhesion properties of collagen fibres in the bruch’s membrane. J Phys Chem Lett B 109:19052–19055. doi:10.1021/jp053605w Google Scholar
  28. Menzel H, Mowery MD, Cai M, Evans CE (1999) Surface-confined nanoparticles as substrates for photopolymerisable self-assembled monolayers. Adv Mater 11:131–134. doi:10.1002/(SICI)1521-4095(199902)11:2<131::AID-ADMA131>3.0.CO;2-VCrossRefGoogle Scholar
  29. Park J, Lee H (2005) Specific immobilisation of nanospheres on template fabricated by using atomic force microscopy lithography. Colloids Surf A Physicochem Eng Asp 257–258:133–135CrossRefGoogle Scholar
  30. Sader JE, Larson I, Mulvaney P, White LR (1995) Method of the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66:3789–3798. doi:10.1063/1.1145439 CrossRefADSGoogle Scholar
  31. Schessler HM, Karpovich DS, Blanchard GJ (1996) Quantitating the balance between enthalpic and entropic forces in alkanethiol/gold monolayer self assembly. J Am Chem Soc 118:9645–9651. doi:10.1021/ja961565r CrossRefGoogle Scholar
  32. Schoenfisch MH, Pemberton JE (1998) Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces. J Am Chem Soc 120:4502–4513. doi:10.1021/ja974301t CrossRefGoogle Scholar
  33. Shipway AN, Katz E, Willner I (2000a) Nanoparticle arrays on surfaces for electronic, optical and sensor applications. ChemPhysChem 1:18–52CrossRefGoogle Scholar
  34. Shipway AN, Lahav M, Willner I (2000b) Nanostructured gold colloid electrodes. Adv Mater 12:993–998. doi:10.1002/1521-4095(200006)12:13<993::AID-ADMA993>3.0.CO;2-3CrossRefGoogle Scholar
  35. Skulason H, Frisbie CD (2000) Rupture of hydrophobic microcontacts in water: correlation of pull-off force with AFM tip radius. Langmuir 16:6294–6297. doi:10.1021/la000208y CrossRefGoogle Scholar
  36. Touhami A, Nysten B, Dufrene YF (2003) Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19:4539–4543. doi:10.1021/la034136x CrossRefGoogle Scholar
  37. Willemsen OH, Snel MME, Van Der Werf KO, De Grooth BG, Greve J, Hinterdorfer P, Gruber HJ, Schindler H, Van Kooyk Y, Figdor CG (1998) Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. Biophys J 75:2220–2228CrossRefPubMedGoogle Scholar
  38. Xu L, Pradham S, Chen S (2007) Adhesion force studies of Janus nanoparticles. Langmuir 23:8544–8548. doi:10.1021/la700774g CrossRefPubMedGoogle Scholar
  39. Yu J, Shapter JG, Quinton JS, Johnston MR, Beattie DA (2007) Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Phys Chem Chem Phys 9:510–520. doi:10.1039/b615096a CrossRefPubMedGoogle Scholar
  40. Zanchet D, Tolentino H, Martins Alves MC, Alves OL, Ugarte D (2000) Inter-atomic distance contraction in thiol-passivated gold nanoparticles. Chem Phys Lett 323:167–172. doi:10.1016/S0009-2614(00)00424-3 CrossRefADSGoogle Scholar
  41. Zhu T, Zhang X, Wang J, Fu X, Liu Z (1998) Assembling colloidal Au nanoparticles with functionalised self-assembled monolayers. Thin Solid Films 327–329:595–598. doi:10.1016/S0040-6090(98)00720-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Benjamin S. Flavel
    • 1
  • Matthew R. Nussio
    • 1
  • Jamie S. Quinton
    • 1
  • Joseph G. Shapter
    • 1
  1. 1.School of Chemistry, Physics & Earth SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations