Advertisement

Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1361–1374 | Cite as

Crystal structure mediates mode of cell death in TiO2 nanotoxicity

  • Laura K. Braydich-Stolle
  • Nicole M. Schaeublin
  • Richard C. Murdock
  • Jingkun Jiang
  • Pratim Biswas
  • John J. Schlager
  • Saber M. Hussain
Research Paper

Abstract

Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

Keywords

Nanotoxicity Nano-size Crystallinity Keratinocytes Nanotechnology Health effects EHS 

Notes

Acknowledgments

The authors would like to thank Col J. Riddle for his strong support and encouragement for this research. They would also like to thank Dr. Amanda Schrand, Mr. Michael Moulton and Ms. Katherine Szczublewski for their technical assistance. Dr. Braydich-Stolle is funded by a Post-Doctoral Fellowship through the National Research Council. Ms. Nicole Schaeublin is supported by the Biosciences and Protection Division, Human Effectiveness Directorate, Air Force Research Laboratory through the Henry Jackson Foundation. Mr. Richard Murdock is funded by the Biosciences and Protection Division, Human Effectiveness Directorate, Air Force Research Laboratory under the Oak Ridge Institute for Science and Education. This work was supported by the Air Force Office of Scientific Research (AFOSR) Project (JON # 2312A214). Dr. Pratim Biswas and Mr. Jingkun Jiang acknowledge support from the U.S. Department of Defense (AFOSR) MURI Grant (FA9550-04-1-0430).

References

  1. Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager J, Hussain SM, Hofmann MC (2008) Silver nanoparticles disrupt GDNF signaling in spermatogonial stem cells independent of nanoparticle size and coating (submitted)Google Scholar
  2. Bucher J, Masten S, Moudgil B, Powers K, Roberts S, Walker N (2004) Developing experimental approaches for the evaluation of toxicological interactions of nanoscale materials. Final workshop report, 3–4 November 2004, University of Florida, Gainesville, FL, pp 1–37Google Scholar
  3. Dharmarajan AM, Hisheh S, Singh B, Parkinson S, Tilly KI, Tilly JL (1999) Antioxidants mimic the ability of chorionic gonadotropin to suppress apoptosis in the rabbit corpus luteum in vitro: a novel role for superoxide dismutase in regulating bax expression. Endocrinology 140:2555–2561. doi: 10.1210/en.140.6.2555 PubMedCrossRefGoogle Scholar
  4. Ellsworth DK, Verhurst D, Spitler TM, Sabacky BJ (2000) Titanium nanoparticles move to the marketplace. Chem Innov 30(12):30–35Google Scholar
  5. Erkkilä K, Hirvonen V, Wuokko E, Parvinen M, Dunkel L (1998) N-acetyl-L-cysteine inhibits apoptosis in human male germ cells in vitro. J Clin Endocrinol Metab 83:2523–2531. doi: 10.1210/jc.83.7.2523 PubMedCrossRefGoogle Scholar
  6. Galis ZS, Asanuma K, Godin D, Meng X (1998) N-acetyl-cysteine decreases the matrix-degrading capacity of macrophage-derived foam cells: new target for antioxidant therapy? Circulation 97:2382–2383Google Scholar
  7. Gómez-Lechón MJ, O’Connor E, Castell JV, Jover R (2002) Sensitive markers used to identify compounds that trigger apoptosis in cultured hepatocytes. Toxicol Sci 65(2):299–308. doi: 10.1093/toxsci/65.2.299 PubMedCrossRefGoogle Scholar
  8. Grassian VH, O’shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115(3):397–402PubMedCrossRefGoogle Scholar
  9. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73. doi: 10.1016/j.tox.2005.05.007 PubMedCrossRefGoogle Scholar
  10. Jiang J, Chen DR, Biswas P (2007a) Synthesis of nanoparticles in a Flame Aerosol Reactor (FLAR) with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603. doi: 10.1088/0957-4484/18/28/285603 CrossRefGoogle Scholar
  11. Jiang J, Oberdörster G, Elder E, Gelein R, Mercer P, Biswas P (2007b) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42CrossRefGoogle Scholar
  12. Lennon S, Martin S, Cotter T (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24(2):203–214. doi: 10.1111/j.1365-2184.1991.tb01150.x PubMedCrossRefGoogle Scholar
  13. Liu Y, Li J, Qiu X, Burda C (2006) Novel TiO2 nanocatalysts for wastewater purification: tapping energy from the sun. Water Sci Technol 54(8):47–54. doi: 10.2166/wst.2006.733 PubMedCrossRefGoogle Scholar
  14. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352. doi: 10.1021/es060589n PubMedCrossRefGoogle Scholar
  15. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersions in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci; Epub ahead of printGoogle Scholar
  16. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi: 10.1126/science.1114397 PubMedCrossRefADSGoogle Scholar
  17. Oberdörster G, Oberdörster E, Oberdörster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  18. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D et al (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi: 10.1186/1743-8977-2-8 PubMedCrossRefGoogle Scholar
  19. Oberdörster G (2005c) Inhaled Nano-sized particles: potential effects and mechanisms. Compute-renu du first international symposium on occupational health implications of nanomaterials, 12–14 October 2004, Buxton, Great Britain, pp 65–71. Edited by the Health and Safety Executive, Great-Britain and the National Institute for Occupational Safety and Health, USA, July 2005Google Scholar
  20. Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447. doi: 10.1136/oem.2003.008227 PubMedCrossRefGoogle Scholar
  21. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185. doi: 10.1093/toxsci/kfj197 PubMedCrossRefGoogle Scholar
  22. Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208. doi: 10.2174/0929867053764635 PubMedCrossRefGoogle Scholar
  23. Venkatachari P, Hopke PK, Grover BD, Eatough DJ (2005) Measurement of particle-bound reactive oxygen species in Rubidoux aerosols. J Atmos Chem 50:49–58. doi: 10.1007/s10874-005-1662-z CrossRefGoogle Scholar
  24. Wang H, Joseph JA (1999) Quantitating cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616. doi: 10.1016/S0891-5849(99)00107-0 PubMedCrossRefGoogle Scholar
  25. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236. doi: 10.1093/toxsci/kfj140 PubMedCrossRefGoogle Scholar
  26. Wold A (1993) Photocatalytic properties of TiO2. Chem Mater 5:280–283. doi: 10.1021/cm00027a008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Laura K. Braydich-Stolle
    • 1
  • Nicole M. Schaeublin
    • 1
  • Richard C. Murdock
    • 1
  • Jingkun Jiang
    • 2
  • Pratim Biswas
    • 2
  • John J. Schlager
    • 1
  • Saber M. Hussain
    • 1
  1. 1.Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research LaboratoryWright-Patterson AFBDaytonUSA
  2. 2.Department of Energy, Environmental, and Chemical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations