Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 231–249 | Cite as

Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

  • Dhimiter Bello
  • Brian L. Wardle
  • Namiko Yamamoto
  • Roberto Guzman deVilloria
  • Enrique J. Garcia
  • Anastasios J. Hart
  • Kwangseog Ahn
  • Michael J. Ellenbecker
  • Marilyn Hallock
Nanoparticles and Occupational Health

Abstract

This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005–20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1–10 μm) fraction, whereas the nano fraction contributed ~10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm−3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm−3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

Keywords

Nanoparticle Nanocomposite Fiber CNTs Airborne exposures Occupational health Nanotechnology EHS 

References

  1. ACGIH (2007) 2007 TLVs® and BEIs®: threshold limit values for chemical substances and physical agents and biological exposure indices. American conference of governmental industrial hygienists, Cincinnati, OH. ISBN: 1-882417-62-3Google Scholar
  2. Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447(7148):1066–1068. doi:10.1038/4471066a PubMedCrossRefADSGoogle Scholar
  3. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science & technology, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  4. Barlow PG, Clouter-Baker A, Donaldson K, Maccallum J, Stone V (2005a) Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Part Fibre Toxicol 2:11. doi:10.1186/1743-8977-2-11 PubMedCrossRefGoogle Scholar
  5. Barlow PG, Donaldson K, MacCallum J, Clouter A, Stone V (2005b) Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration. Toxicol Lett 155(3):397–401. doi:10.1016/j.toxlet.2004.11.006 PubMedCrossRefGoogle Scholar
  6. Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ et al (2008) Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 46:974–981. doi:10.1016/j.carbon.2008.03.003 CrossRefGoogle Scholar
  7. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652. doi:10.1016/j.carbon.2006.02.038 CrossRefGoogle Scholar
  8. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22. doi:10.1093/toxsci/kfj130 PubMedCrossRefGoogle Scholar
  9. Foucaud L, Wilson MR, Brown DM, Stone V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174(1–3):1–9. doi:10.1016/j.toxlet.2007.08.001 PubMedCrossRefGoogle Scholar
  10. Garcia EJ, Hart AJ, Wardle BW, Slocum AH (2007) Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers. Nanotechnology 18(16):165602. doi:10.1088/0957-4484/1018/1016/165602 CrossRefADSGoogle Scholar
  11. Garcia EJ, Wardle BL, Hart AJ, Yamamoto N (2008a) Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos Sci Technol 68(9):2034–2041. doi:10.1016/j.compscitech.2008.02.028 CrossRefGoogle Scholar
  12. Garcia EJ, Wardle BL, Hart AJ (2008b) Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A 39:1065–1070. doi:10.1016/j.compositesa.2008.03.011 CrossRefGoogle Scholar
  13. Gupta A, Gaspar DJ, Yost MG, Gross GM, Rempes PE, Clark ML et al (2006) Evaluating the potential for release of carbon nanotubes and subsequent occupational exposure during processing of a nanocomposite. In: Nanotechnology occupational and environmental health and safety 2006, Cincinnati, OHGoogle Scholar
  14. Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN et al (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20(8):741–749. doi:10.1080/08958370801942238 PubMedCrossRefGoogle Scholar
  15. Hart AJ, Slocum AH (2006) Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin film catalyst (with cover). J Phys Chem B 110:8250–8257. doi:10.1021/jp055498b PubMedCrossRefGoogle Scholar
  16. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134. doi:10.1093/toxsci/kfg243 PubMedCrossRefGoogle Scholar
  17. Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217. doi:10.1080/10408440600570233 PubMedCrossRefGoogle Scholar
  18. Lavine M (2006) The right combination. Science 314:1099. doi:10.1126/science.314.5802.1099 CrossRefGoogle Scholar
  19. Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4(12):D125–D130. doi:10.1080/15459620701683871 PubMedCrossRefGoogle Scholar
  20. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428. doi:10.1038/nnano.2008.111 PubMedCrossRefGoogle Scholar
  21. Rogers E, Hsieh SF, Rao N, Schmidt D, Bello D (2008) A high throughput analytical approach to screen for oxidative stress potential exerted by nanomaterials in a biologically relevant matrix: human blood serum. Toxicol In Vitro 22:1639–1647. doi:10.1016/j.tiv.2008.06.001 PubMedCrossRefGoogle Scholar
  22. Schulte K, Windle AH (2007) Carbon nanotube (CNT)–polymer composites. Comp Sci Tech 67(777):Entire issueGoogle Scholar
  23. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708. doi:10.1152/ajplung.00084.2005 PubMedCrossRefGoogle Scholar
  24. Thostenson ET, Li C, Chou W (2005) Nanocomposites in context. Comp Sci Tech 65:491–516. doi:10.1016/j.compscitech.2004.11.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Dhimiter Bello
    • 1
  • Brian L. Wardle
    • 2
  • Namiko Yamamoto
    • 2
  • Roberto Guzman deVilloria
    • 2
  • Enrique J. Garcia
    • 2
  • Anastasios J. Hart
    • 2
  • Kwangseog Ahn
    • 1
  • Michael J. Ellenbecker
    • 1
  • Marilyn Hallock
    • 3
  1. 1.Department of Work EnvironmentUniversity of Massachusetts LowellLowellUSA
  2. 2.Technology Laboratory for Advanced Materials and Structures, Department of Aeronautics & AstronauticsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Environmental Health & SafetyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations