Skip to main content
Log in

Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

  • Nanoparticles and Occupational Health
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005–20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1–10 μm) fraction, whereas the nano fraction contributed ~10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm−3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm−3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Carbon fibers are pre-impregnated with a partially cured thermosetting polymer to form the raw ‘prepreg’ layer that is stacked in layers and cured to form a laminate.

References

  • ACGIH (2007) 2007 TLVs® and BEIs®: threshold limit values for chemical substances and physical agents and biological exposure indices. American conference of governmental industrial hygienists, Cincinnati, OH. ISBN: 1-882417-62-3

  • Ajayan PM, Tour JM (2007) Materials science: nanotube composites. Nature 447(7148):1066–1068. doi:10.1038/4471066a

    Article  PubMed  ADS  CAS  Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science & technology, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Barlow PG, Clouter-Baker A, Donaldson K, Maccallum J, Stone V (2005a) Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages. Part Fibre Toxicol 2:11. doi:10.1186/1743-8977-2-11

    Article  PubMed  Google Scholar 

  • Barlow PG, Donaldson K, MacCallum J, Clouter A, Stone V (2005b) Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration. Toxicol Lett 155(3):397–401. doi:10.1016/j.toxlet.2004.11.006

    Article  PubMed  CAS  Google Scholar 

  • Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ et al (2008) Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 46:974–981. doi:10.1016/j.carbon.2008.03.003

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652. doi:10.1016/j.carbon.2006.02.038

    Article  CAS  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G et al (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92(1):5–22. doi:10.1093/toxsci/kfj130

    Article  PubMed  CAS  Google Scholar 

  • Foucaud L, Wilson MR, Brown DM, Stone V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174(1–3):1–9. doi:10.1016/j.toxlet.2007.08.001

    Article  PubMed  CAS  Google Scholar 

  • Garcia EJ, Hart AJ, Wardle BW, Slocum AH (2007) Fabrication of composite microstructures by capillarity-driven wetting of aligned carbon nanotubes with polymers. Nanotechnology 18(16):165602. doi:10.1088/0957-4484/1018/1016/165602

    Article  ADS  Google Scholar 

  • Garcia EJ, Wardle BL, Hart AJ, Yamamoto N (2008a) Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Compos Sci Technol 68(9):2034–2041. doi:10.1016/j.compscitech.2008.02.028

    Article  CAS  Google Scholar 

  • Garcia EJ, Wardle BL, Hart AJ (2008b) Joining prepreg composite interfaces with aligned carbon nanotubes. Composites Part A 39:1065–1070. doi:10.1016/j.compositesa.2008.03.011

    Article  Google Scholar 

  • Gupta A, Gaspar DJ, Yost MG, Gross GM, Rempes PE, Clark ML et al (2006) Evaluating the potential for release of carbon nanotubes and subsequent occupational exposure during processing of a nanocomposite. In: Nanotechnology occupational and environmental health and safety 2006, Cincinnati, OH

  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN et al (2008) Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 20(8):741–749. doi:10.1080/08958370801942238

    Article  PubMed  Google Scholar 

  • Hart AJ, Slocum AH (2006) Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin film catalyst (with cover). J Phys Chem B 110:8250–8257. doi:10.1021/jp055498b

    Article  PubMed  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134. doi:10.1093/toxsci/kfg243

    Article  PubMed  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217. doi:10.1080/10408440600570233

    Article  PubMed  CAS  Google Scholar 

  • Lavine M (2006) The right combination. Science 314:1099. doi:10.1126/science.314.5802.1099

    Article  CAS  Google Scholar 

  • Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4(12):D125–D130. doi:10.1080/15459620701683871

    Article  PubMed  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428. doi:10.1038/nnano.2008.111

    Article  PubMed  CAS  Google Scholar 

  • Rogers E, Hsieh SF, Rao N, Schmidt D, Bello D (2008) A high throughput analytical approach to screen for oxidative stress potential exerted by nanomaterials in a biologically relevant matrix: human blood serum. Toxicol In Vitro 22:1639–1647. doi:10.1016/j.tiv.2008.06.001

    Article  PubMed  CAS  Google Scholar 

  • Schulte K, Windle AH (2007) Carbon nanotube (CNT)–polymer composites. Comp Sci Tech 67(777):Entire issue

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708. doi:10.1152/ajplung.00084.2005

    Article  PubMed  CAS  Google Scholar 

  • Thostenson ET, Li C, Chou W (2005) Nanocomposites in context. Comp Sci Tech 65:491–516. doi:10.1016/j.compscitech.2004.11.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported under the Nanoscale Science and Engineering Centers Program of the National Science Foundation (Award # NSF-0425826) and by Airbus S.A.S., Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems, and Textron Inc. through MIT’s Nano-engineered composite aerospace structures (NECST) Consortium. Namiko Yamamoto acknowledges support from the Linda and Richard (1958) Hardy Fellowship. Authors would like to thank Dr. Arthur Miller of NIOSH for his generous offering of the prototype electrostatic precipitator and C. Santeufemio and Dr. Earl Ada of the UML Materials Characterization Lab for their technical assistance with EM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhimiter Bello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello, D., Wardle, B.L., Yamamoto, N. et al. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 11, 231–249 (2009). https://doi.org/10.1007/s11051-008-9499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9499-4

Keywords

Navigation