Advertisement

Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1099–1105 | Cite as

A rationale on the role of intermediate Au(III)–vitamin C complexation in the production of gold nanoparticles

Research Paper

Abstract

Preparation of gold nanoparticles, particularly gold nanorods, by wet chemistry processes involves gold seeds, an Au(III) salt, structure directing surfactants, and metal ion additives in the growth solution into which a weak reducing agent is added. The most commonly employed weak reducing agent is l-ascorbic acid (vitamin C) which is known to reduce many metal ions in the solution phase and form complexes with relatively low stability constants. A purple-gray gold–ascorbate compound, obtained from the reaction of sodium tetrachloroaurate(III) with sodium ascorbate, is now reported. The compound possesses the expected structural features of vitamin C–metal complexes as verified by its 13C CP-MAS NMR spectrum. A discussion is also presented on the possibility of gold–ascorbate complexation operating in gold nanoparticle formation.

Keywords

Gold nanoparticles Gold colloids Vitamin C Ascorbate complexes Nanoparticle synthesis 

Notes

Acknowledgment

The author is grateful to Dr. Laura Linati (University of Pavia) for the record of the NMR spectrum.

References

  1. Andreescu D, Kumar Sau T, Goia DV (2006) Stabilizer-free nanosized gold sols. J Colloid Interface Sci 298:742–751. doi: 10.1016/j.jcis.2006.01.011 PubMedCrossRefGoogle Scholar
  2. Bauernfeind JC (1982) Ascorbic acid technology in agricultural, pharmaceutical, food and industrial applications. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism and uses, Advances in Chemistry Series No. 200. American Chemical Society, Washington, DC, pp 418–423Google Scholar
  3. Bielski BHJ (1982) Chemistry of ascorbic acid radicals. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism and uses, Advances in Chemistry Series No. 200. American Chemical Society, Washington, DC, pp 81–100Google Scholar
  4. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high aspect-ratio gold nanorods. Adv Mater 15:414–416. doi: 10.1002/adma.200390095 CrossRefGoogle Scholar
  5. Casas JS, Castano MV, Garcia-Tasende MS, Perez-Alvarez T, Sanchez A, Sordo J (1996) Compounds of l(+)-ascorbic acid with dimethylthallium(III), dimethyltin(IV) and dibutyltin(IV). Synthesis, solid-state spectroscopy (CP/MAS 13C NMR and IR), and multi-NMR behavior in aqueous solution. J Inorg Biochem 61:97–108. doi: 10.1016/0162-0134(95)00034-8 CrossRefGoogle Scholar
  6. Creutz C (1981) Complexities of ascorbate as a reducing agent. Inorg Chem 20:4449–4452. doi: 10.1021/ic50226a088 CrossRefGoogle Scholar
  7. Davies MB (1992) Reactions of l-ascorbic acid with transition metal complexes. Polyhedron 11:285–321. doi: 10.1016/S0277-5387(00)83175-7 CrossRefGoogle Scholar
  8. Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287. doi: 10.1021/la00009a002 CrossRefGoogle Scholar
  9. Finholt P, Paulssen RB, Alsos I, Higuchi T (1965) Rate studies on the anaerobic degradation of ascorbic acid II. Rate of formation of carbon dioxide. J Pharm Sci 54:124–128. doi: 10.1002/jps.2600540128 PubMedCrossRefGoogle Scholar
  10. Goia DV, Matijevic E (1999) Tailoring the particle size of monodispersed colloidal gold. Colloids Surf A Physicochem Eng Asp 146:139–152. doi: 10.1016/S0927-7757(98)00790-0 CrossRefGoogle Scholar
  11. Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672. doi: 10.1021/cm050525w CrossRefGoogle Scholar
  12. Herbert RW, Hirst EL, Percival EDV, Reynolds RJW, Smith F (1933) The constitution of ascorbic acid. J Chem Soc 1270–1290. doi: 10.1039/jr9330001270
  13. Hollis LS, Stern EW, Amundsen AR, Miller AV, Doran SL (1987) Platinum complexes of vitamin C. NMR studies on the solution chemistry of cis-platinum(diamine)(ascorbate) complexes. J Am Chem Soc 109:3596–3602. doi: 10.1021/ja00246a016 CrossRefGoogle Scholar
  14. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067. doi: 10.1021/jp0107964 CrossRefGoogle Scholar
  15. Juhasz JR, Pisterzi LF, Gasparm DM, Almeida DRP, Csizmedia IG (2003) The effects of conformation on the acidity of ascorbic acid: a density functional study. J Mol Struct THEOCHEM 666/667:401–407. doi: 10.1016/j.theochem.2003.08.042 CrossRefGoogle Scholar
  16. Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109:22192–22200. doi: 10.1021/jp054808n PubMedCrossRefGoogle Scholar
  17. Martell AE (1982) Chelates of ascorbic acid. Formation and catalytic properties. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism and uses, Advances in Chemistry Series No. 200. American Chemical Society, Washington, DC, pp 152–156Google Scholar
  18. Miranda OR, Dollahon NR, Ahmadi TS (2006) Critical concentrations and role of ascorbic acid (vitamin C) in the crystallization of gold nanorods within hexadecyltrimethyl ammonium bromide (CTAB)/tetraoctyl ammonium bromide (TOAB) micelles. Crystallogr Growth Des 6:2747–2753. doi: 10.1021/cg060455l CrossRefGoogle Scholar
  19. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82. doi :10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#CrossRefGoogle Scholar
  20. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L et al (2005) Anisotropic metal nanoparticles: synthesis, assembly and optical applications. J Phys Chem B 109:13857–13870. doi: 10.1021/jp0516846 PubMedCrossRefGoogle Scholar
  21. Murugadoss A, Pasricha R, Chattopadhyay A (2007) Ascorbic acid as a mediator and template for assembling metallic nanoparticles. J Colloid Interface Sci 311:303–310. doi: 10.1016/j.jcis.2007.02.073 PubMedCrossRefGoogle Scholar
  22. Niidome Y, Nishioha K, Hawasaki H, Yamada S (2003) Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem Commun (Camb) 2376–2378. doi: 10.1039/b307836a
  23. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi: 10.1021/cm020732l CrossRefGoogle Scholar
  24. Pal T, De S, Jana NR, Pradhan N, Mandal R, Pal A (1998) Organized media as redox catalysts. Langmuir 14:4724–4730. doi: 10.1021/la980057n CrossRefGoogle Scholar
  25. Perez-Juste J, Liz-Marzán LM, Carnie S, Chan DYC, Mulvaney P (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 14:571–579. doi: 10.1002/adfm.200305068 CrossRefGoogle Scholar
  26. Perez-Juste J, Pastoriza-Santoz I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901. doi: 10.1016/j.ccr.2005.01.030 CrossRefGoogle Scholar
  27. Pudephatt RJ, Vittal JJ (1994) Gold: inorganic & coordination chemistry. In: King RB (ed) Encyclopedia of inorganic chemistry, vol 3. Wiley, Chichester, pp 1320–1331Google Scholar
  28. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2005) Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J Phys Chem B 109:14257–14261. doi: 10.1021/jp052516g PubMedCrossRefGoogle Scholar
  29. Sau K, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanopart Res 3:257–261. doi: 10.1023/A:1017567225071 CrossRefGoogle Scholar
  30. Sripria R, Chandrasekaran M, Noel M (2006) Voltammetric analysis of hydroquinone, ascorbic acid, nitrobenzene and benzyl chloride in aqueous, non-aqueous, micellar and microemulsion media. Colloid Polym Sci 285:39–48. doi: 10.1007/s00396-006-1532-5 CrossRefGoogle Scholar
  31. Unaleroglu C, Zumreoglu-Karan B, Mert Y (2001) Synthesis and characterization of copper ascorbate. Synth React Inorg Met-Org Chem 31:1531–1543. doi: 10.1081/SIM-100107700 CrossRefGoogle Scholar
  32. Underwood S, Mulvaney P (1994) Effect of the solution refractive index on the color of gold colloids. Langmuir 10:3427–3430. doi: 10.1021/la00022a011 CrossRefGoogle Scholar
  33. Wang C, Wang T, Ma Z, Su Z (2005) pH-tuned synthesis of gold nanostructures from gold nanorods with different aspect ratios. Nanotechnology 16:2555–2560. doi: 10.1088/0957-4484/16/11/015 CrossRefADSGoogle Scholar
  34. Yuge H, Miyamoto TK (2002) Steric influence on platinum(II) ascorbate complexes. Inorg Chim Acta 329:66–70. doi: 10.1016/S0020-1693(01)00810-6 CrossRefGoogle Scholar
  35. Zümreoglu-Karan B (2006) The coordination chemistry of vitamin C—an overview. Coord Chem Rev 250:2295–2307. doi: 10.1016/j.ccr.2006.03.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryHacettepe UniversityAnkaraTurkey

Personalised recommendations