Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 939–946 | Cite as

Enzyme-induced growth of silver nanoparticles studied on single particle level

  • Thomas Schüler
  • Andrea Steinbrück
  • Grit Festag
  • Robert Möller
  • Wolfgang FritzscheEmail author
Research Paper


Based on their interesting properties, metal nanoparticles show the potential as an analytical tool in electronic (Burmeister et al. 2004), optical (Yguerabide and Yguerabide 1998), and catalytic applications (Liu 2006). Their characteristics depend on the composition, shape, and size of the single particles. These various properties are utilized in many different approaches such as optics, magnetics (Lang et al. 2007), and laser technology (Csaki et al. 2007). We investigated an alternative method for the synthesis of nanoparticles. In this case, an enzyme, horseradish peroxidase, induces a silver deposition and replaces a metal nanoparticle as the reaction seed. Depending on the reaction time, we could obtain particles in a range of few nanometers up to more than 250 nm. For a better understanding of the enzymatic silver deposition process, the silver particles produced by this process were analyzed by SEM, TEM, and atomic force microscopy (AFM) on a single particle level after different enhancement times. The AFM images were utilized for the characterization of particle height and volume to study the enzyme kinetics, i.e., the particle growth process. Thereby, two different phases are described: a first growth phase probably induced by the enzyme-related growth, and a second, more unspecific growth based on the metal deposition onto the silver deposits. These findings may help to use the enzyme-induced silver deposition in a quantitative manner for bioanalytical applications.


Enzyme-induced silver deposition Silver nanoparticles Horseradish peroxidase Volume measurement Size enlargement 



Funding of research project “Jenaer Biochip Initiative” (JBCI) within the framework “Unternehmen Region—Inno Profile” from the Federal Ministry of Education and Research, Germany (BMBF) is gratefully acknowledged. This work was supported by the DFG (FR 1348/5-2). We thank Nanoprobes for the kind support with EnzMet enhancement kit, Richard Powell, Vishwas Joshi, Wenqiu Liu, and James Hainfeld for helpful discussions, James Vesenka for the help with AFM measurements, and Daniell Malsch for the discussions about volume measurement as well as Franka Jahn for SEM imaging. Development of the enzyme metallographic reagent was supported by Small Business Innovation Research Grant 5R44 GM064257-03 from the National Institute of General Medical Sciences (NIH), USA.


  1. Barrett S (2008) Image SXM v1.85. Accessed 9 July 2007
  2. Basnar B, Weizmann Y et al (2006) Synthesis of nanowires using dip-pen nanolithography and biocatalytik inks. Adv Mater 18:713–718. doi: 10.1002/adma.200502320 CrossRefGoogle Scholar
  3. Burmeister J, Bazilyanska V et al (2004) Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA. Anal Bioanal Chem 379(3):391–398. doi: 10.1007/s00216-004-2601-6 PubMedCrossRefGoogle Scholar
  4. Csaki A, Kaplanek P et al (2003) The optical detection of individual DNA-conjugated gold nanoparticle labels after metal enhancement. Nanotechnology 14:1262–1268. doi: 10.1088/0957-4484/14/12/006 CrossRefADSGoogle Scholar
  5. Csaki A, Garwe F et al (2007) A parallel approach for subwavelength molecular surgery using gene-specific positioned metal nanoparticles as laser light antennas. Nano Lett 7(2):247–253. doi: 10.1021/nl061966x PubMedCrossRefGoogle Scholar
  6. Davis J, Vaughan DH, Cardosi MF (1995) Elements of biosensor construction. Enzym Microb Technol 17:1030–1035. doi: 10.1016/0141-0229(95)00013-5 CrossRefGoogle Scholar
  7. Festag G, Steinbrück A et al (2007) Single particle studies of the autocatalytic metal deposition onto surface-bound gold nanoparticles reveal a linear growth. Nanotechnology 17:1–10Google Scholar
  8. Fritzsche W, Taton TA (2003) Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14:R63–R73. doi: 10.1088/0957-4484/14/12/R01 CrossRefADSGoogle Scholar
  9. Hacker GW, Grimelius L et al (1988) Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J Histotechnol 11:213–221Google Scholar
  10. Hainfeld JF, Eisen RN et al (2002) Enzymatic metallography: a simple new staining method. In: Voekl E, Piston D, Gauvin R et al. (eds) Proceedings of microscopy and microanalysis, vol 8. Cambridge University Press, New York, pp 916CDGoogle Scholar
  11. Hwang S, Kim E, Kwak J (2005) Electrochemical detection of DNA hybridization using biometallization. Anal Chem 77:579–584. doi: 10.1021/ac048778g PubMedCrossRefGoogle Scholar
  12. Katz E, Willner I (2004) Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed Engl 43(45):6042–6108. doi: 10.1002/anie.200400651 PubMedCrossRefGoogle Scholar
  13. Klapetek P (2007) Gwyddion. Accessed 19 Oct 2007
  14. Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio-and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151. doi: 10.1002/mabi.200600235 PubMedCrossRefGoogle Scholar
  15. Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7. doi: 10.1263/jbb.102.1 PubMedCrossRefGoogle Scholar
  16. Möller R, Csaki A et al (2001) Electrical classification of the concentration of bioconjugated metal colloids after surface adsorption and silver enhancement. Langmuir 17:5426–5430. doi: 10.1021/la0102408 CrossRefGoogle Scholar
  17. Möller R, Powell RD et al (2005) Enzymatic control of metal deposition as key step for a low-background electrical detection for DNA chips. Nano Lett 5(7):1475–1482. doi: 10.1021/nl050824k PubMedCrossRefGoogle Scholar
  18. Park SJ, Taton TA et al (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506PubMedADSGoogle Scholar
  19. Patolsky F, Zayats M, Katz E, Willner I (1999) Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by Faradaic impedance spectroscopy, cyclic voltammetry and microgravimetric quartz crystal microbalance analyses. Anal Chem 71:3171–3180. doi: 10.1021/ac9901541 PubMedCrossRefGoogle Scholar
  20. Patolsky F, Lichtenstein A et al (2001) Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat Biotechnol 19(3):253–257. doi: 10.1038/85704 PubMedCrossRefGoogle Scholar
  21. Reichert J, Csaki A et al (2000) Chip-based optical detection of DNA hybridization by means of nanobead labeling. Anal Chem 72:6025–6029. doi: 10.1021/ac000567y PubMedCrossRefGoogle Scholar
  22. Storhoff JJ, Lucas AD et al (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22(7):883–887. doi: 10.1038/nbt977 PubMedCrossRefGoogle Scholar
  23. Sun H, Chattopadhaya S, Wang J, Yao SQ (2006) Recent developments in microarray-based enzyme assay: from functional annotation to substrate/inhibitor fingerprinting. Anal Bioanal Chem 386:416–426. doi: 10.1007/s00216-006-0511-5 PubMedCrossRefGoogle Scholar
  24. Urban M, Möller R et al (2003) A paralleled readout system for an electrical DNA-hybridization assay based on a microstructured electrode array. Rev Sci Instrum 74:1077–1081. doi: 10.1063/1.1533103 CrossRefADSGoogle Scholar
  25. Willner I, Baron R et al (2006) Growing metal nanoparticles by enzymes. Adv Mater 18:1109–1120. doi: 10.1002/adma.200501865 CrossRefGoogle Scholar
  26. Willner I, Basnar B, Willner B (2007) Nanoparticle-enzyme hybrid systems for nanobiotechnology. FEBS J 274:302–309. doi: 10.1111/j.1742-4658.2006.05602.x PubMedCrossRefGoogle Scholar
  27. Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. Anal Biochem 262(2):157–176. doi: 10.1006/abio.1998.2760 PubMedCrossRefGoogle Scholar
  28. Zhang G-J, Möller R et al (2002) Optical detection of DNA constructs based on nanoparticles and silver enhancement. In: Fritzsche (ed) DNA based molecular construction, vol 640. American Institute of Physics, MD, pp 13–21Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Thomas Schüler
    • 1
  • Andrea Steinbrück
    • 2
  • Grit Festag
    • 2
  • Robert Möller
    • 1
  • Wolfgang Fritzsche
    • 2
    Email author
  1. 1.JBCI, Institute of Physical ChemistryFriedrich-Schiller-University JenaJenaGermany
  2. 2.Institute of Photonic TechnologyJenaGermany

Personalised recommendations