Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 955–963 | Cite as

Carbon-coated SnO2 nanobelts and nanoparticles by single catalytic step

  • Neftali L. V. CarreñoEmail author
  • Michael R. Nunes
  • Irene T. S. Garcia
  • Marcelo O. Orlandi
  • Humberto V. Fajardo
  • Elson Longo
Research Paper


Several types of carbon nanostructures (amorphous and graphitic), for the coating of SnO2 nanobelts and nanoparticles were obtained by a single catalytic process, during methane, natural gas, and methanol decomposition using the reactivity of surface-modified SnO2 nanostructure as a nanotemplate. The nanostructured catalyst templates were based on transition metal nanoparticles supported on SnO2 nanobelts previously prepared by a carbothermal reduction process. Carbon-coated SnO2 nanopowders were also successfully synthesized for the fabrication of carbon spheres. The carbon coating process and yield, along with the nature of the nanostructured carbon, are strongly influenced by the chemically modified surface of the SnO2 nanostructure template and the chemical reaction gas composition. The preliminary catalytic activity and gas-sensing properties of these novel materials based on metal nanoparticles and carbon-coated SnO2 were determined.


SnO2 nanobelts Carbon coating nanostructure Catalytic process Chemical synthesis Nanopowder 



This research was supported by the following Brazilian funding support agencies: CNPq, FINEP, FAPESP, and FAPERGS. The TEM facilities were provided by the LME-LNLS (National Laboratory of Synchrotron Light), Campinas, Brazil.


  1. Alberton AL, Souza MM, Schmal M (2007) Carbon formation and its influence on ethanol steam reforming over Ni/Al2O3 catalysts. Catal Today 123:257–264. doi: 10.1016/j.cattod.2007.01.062 CrossRefGoogle Scholar
  2. Bai J, Xu Z, Zheng Y (2006) Microwave-polyol process for functionalizing carbon nanotubes with SnO2 and CeO2 coating. Chem Lett 35:96–97. doi: 10.1246/cl.2006.96 CrossRefGoogle Scholar
  3. Carreño NLV, Maciel AP, Leite ER et al (2002) The influence of cation segregation on the methanol decomposition on nanostructured SnO2. Sens Actuators B Chem 86:185–192. doi: 10.1016/S0925-4005(02)00169-7 CrossRefGoogle Scholar
  4. Carreño NLV, Fajardo HV, Maciel AP et al (2004) Selective synthesis of vinyl ketone over SnO2 nanoparticle catalysts doped with rare earths. J Mol Catal A Chem 207:91–96. doi: 10.1016/S1381-1169(03)00496-5 CrossRefGoogle Scholar
  5. Carreño NLV, Garcia ITS, Leite ER, Longo E et al (2007) Catalyst nanocomposites templates of carbon nanoribbons, nanospheres and nanotubes. Mater Lett 61:3341–3344. doi: 10.1016/j.matlet.2006.11.061 CrossRefGoogle Scholar
  6. Chiu HC, Yeh CS (2007) Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J Phys Chem C 111:7256–7259. doi: 10.1021/jp0688355 CrossRefGoogle Scholar
  7. Dawson EA, Barnes PA, Chinn MJ (2006) Preparation and characterisation of carbon-coated ceramic foams for organic vapour adsorption. Carbon 44:1189–1197. doi: 10.1016/j.carbon.2005.10.053 CrossRefGoogle Scholar
  8. Fajardo HV, Longo E, Probst LFD, Valentini A et al (2008) Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res Lett 3:194–199. doi: 10.1007/s11671-008-9135-3 CrossRefADSGoogle Scholar
  9. Guo LG, Song W, Xie CS et al (2007) Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane. Mater Lett 61:3211–3214. doi: 10.1016/j.matlet.2006.11.035 CrossRefGoogle Scholar
  10. Han WQ, Zettl A (2003) Coating single-walled carbon nanotubes with tin oxide. Nano Lett 3:681–683. doi: 10.1021/nl034142d CrossRefGoogle Scholar
  11. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19:2098–2106. doi: 10.1021/ef0500538 CrossRefGoogle Scholar
  12. Hong SY, Popovitz-Biro R, Prior Y et al (2003) Synthesis of SnS2/SnS fullerene-like nanoparticles: a superlattice with polyhedral shape. J Am Chem Soc 125:10470–10474. doi: 10.1021/ja036057d PubMedCrossRefGoogle Scholar
  13. Kolmakov A, Klenov DO, Lilach Y et al (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673. doi: 10.1021/nl050082v PubMedCrossRefGoogle Scholar
  14. Leite ER, Gomes JW, Oliveira MM et al (2002) Synthesis of SnO2 nanoribbons by a carbothermal reduction process. J Nanosci Nanotechnol 2:125–128. doi: 10.1166/jnn.2002.094 PubMedCrossRefGoogle Scholar
  15. Maciel AP, Carreño NLV, Lucena PR et al (2004) Processing effects of nanometric rare earth-doped tin oxides on the synthesis of methyl vinyl ketone. Reac Kinet Catal Lett 81:211–217. doi: 10.1023/B:REAC.0000019425.58542.04 CrossRefGoogle Scholar
  16. Meille V (2006) Review on methods to deposit catalysts on structured surfaces. Appl Catal A 315:1–17. doi: 10.1016/j.apcata.2006.08.031 CrossRefGoogle Scholar
  17. Nemes TA, Chambers A, Baker TK (1998) Characteristics of carbon filament formation from the interaction of cobalt-tin particles with ethylene. J Phys Chem B 102:6323–6330. doi: 10.1021/jp981305r CrossRefGoogle Scholar
  18. Noh M, Kwon Y, Lee H et al (2005) Amorphous carbon-coated tin anode material for lithium secondary battery. Chem Mater 17:1926–1929. doi: 10.1021/cm0481372 CrossRefGoogle Scholar
  19. Oliveira RG, Marreco JDM (2006) Natural gas power generation in Brazil: new window of opportunity. Energy Policy 34:2361–2372. doi: 10.1016/j.enpol.2005.04.010 CrossRefGoogle Scholar
  20. Sheng PY, Bowmaker GA, Idriss H (2004) The reactions of ethanol over Au/CeO2. Appl Catal A Gen 261:171–181. doi: 10.1016/j.apcata.2003.10.046 CrossRefGoogle Scholar
  21. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117:39–49. doi: 10.1016/j.cej.2005.12.008 CrossRefGoogle Scholar
  22. Yang RS, Wang ZL (2006) Springs, rings, and spirals of rutile-structured tin oxide nanobelts. J Am Chem Soc 128:1466–1467PubMedCrossRefGoogle Scholar
  23. Zhu YA, Dai YC, Chen D (2007) First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers. Carbon 45:21–27. doi: 10.1016/j.carbon.2006.08.015 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Neftali L. V. Carreño
    • 1
    Email author
  • Michael R. Nunes
    • 1
  • Irene T. S. Garcia
    • 1
  • Marcelo O. Orlandi
    • 2
  • Humberto V. Fajardo
    • 3
  • Elson Longo
    • 3
  1. 1.Instituto de Química e Geociências, Departamento de Química Analítica e InorgânicaUniversidade Federal de PelotasCapão do LeãoBrazil
  2. 2.Departamento de Física e QuímicaUniversidade Estadual PaulistaIlha SolteiraBrazil
  3. 3.Instituto de QuímicaUniversidade e Estadual PaulistaAraraquaraBrazil

Personalised recommendations