Journal of Nanoparticle Research

, Volume 11, Issue 1, pp 101–109 | Cite as

Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM)

  • C. AsbachEmail author
  • H. Fissan
  • B. Stahlmecke
  • T. A. J. Kuhlbusch
  • D. Y. H. Pui
Nanoparticles and Occupational Health


Nanoparticle Surface Area Monitor (NSAM, TSI model 3550 and Aerotrak 9000) is an instrument designed to measure airborne surface area concentrations that would deposit in the alveolar or tracheobronchial region of the lung. It was found that the instrument can only be reliably used for the size range of nanoparticles between 20 and 100 nm. The upper size range can be extended to 400 nm, where the minimum in the deposition curves occurs. While the fraction below 20 nm usually contributes only negligibly to the total surface area and is therefore not critical, a preseparator is needed to remove all particles above 400 nm in cases where the size distribution extends into the larger size range. Besides limitations in the particle size range, potential implications of extreme concentrations up to the coagulation limit, particle material (density and composition) and particle morphology are discussed. While concentration does not seem to pose any major constraints, the effect of different agglomerate shapes still has to be further investigated. Particle material has a noticeable impact neither on particle charging in NSAM nor on the deposition curves within the aforementioned size range, but particle hygroscopicity can cause the lung deposition curves to change significantly which currently cannot be mimicked with the instrument. Besides limitations, possible extensions are also discussed. It was found that the tendencies of the particle deposition curves of a reference worker for alveolar, tracheobronchial, total and nasal depositions share the same tendencies in the 20–400 nm size range and that their ratios are almost constant. This also seems to be the case for different individuals and under different breathing conditions. By means of appropriate calibration factors NSAM can be used to deliver the lung deposited surface area concentrations in all these regions, based on a single measurement.


Nanoparticles Surface area NSAM Occupational health Nanotechnology EHS 



The authors wish to thank Nick Stanley of University of Minnesota for providing SMPS data for DOS particles and Joakim Pagels of Lund University for giving us the opportunity of testing the NSAM during actual welding work.


  1. Brunauer S, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi: 10.1021/ja01269a023 CrossRefADSGoogle Scholar
  2. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME et al (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759. doi: 10.1056/NEJM199312093292401 Google Scholar
  3. Donaldson K, Li XY, MacNee W (1998) Ultrafine (nanometer) particle mediated lung injury. J Aerosol Sci 29:553–560. doi: 10.1016/S0021-8502(97)00464-3 CrossRefGoogle Scholar
  4. Fissan H, Neumann S, Trampe A, Pui DYH, Shin WG (2007) Rationale and principle of an instrument measuring lung deposited nanoparticle surface area. J Nanopart Res 9:53–59. doi: 10.1007/s11051-006-9156-8 CrossRefGoogle Scholar
  5. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in bipolar ionic atmosphere. Geofis Pura Appl 56:185–193CrossRefADSGoogle Scholar
  6. Gäggeler HW, Baltensperger U, Emmenegger M (1989) The epiphaniometer, a new device for continuous aerosol monitoring. J Aerosol Sci 20:557–564. doi: 10.1016/0021-8502(89)90101-8 CrossRefGoogle Scholar
  7. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H et al (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65:1513–1530. doi: 10.1080/00984100290071649 CrossRefGoogle Scholar
  8. Lall AA, Friedlander SK (2006) On-line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis. J Aerosol Sci 37:260. doi: 10.1016/j.jaerosci.2005.05.021 CrossRefGoogle Scholar
  9. Löndahl J, Pagels J, Swietlicki E, Zhou J, Ketzel M, Massling A et al (2006) A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. J Aerosol Sci 37:1152–1163. doi: 10.1016/j.jaerosci.2005.11.004 CrossRefGoogle Scholar
  10. Löndahl J, Massling A, Pagels J, Swietlicki E, Vaclavik E, Loft S (2007) Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhal Toxicol 19:109–116. doi: 10.1080/08958370601051677 Google Scholar
  11. Morawska L, Hofmann W, Hitchins-Loveday J, Swanson C, Mengersen K (2005) Experimental study of the deposition of combustion aerosols in the human respiratory tract. J Aerosol Sci 36:939–957. doi: 10.1016/j.jaerosci.2005.03.015 CrossRefGoogle Scholar
  12. Oberdörster G (1996) Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Part Sci Technol 14:135–151. doi: 10.1080/02726359608906690 CrossRefGoogle Scholar
  13. Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740. doi: 10.1098/rsta.2000.0680 CrossRefADSGoogle Scholar
  14. Oberdörster E (2004) Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062PubMedGoogle Scholar
  15. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. doi: 10.1080/08958370490439597 Google Scholar
  16. Shin WG, Pui DYH, Fissan H, Neumann S, Trampe A (2007) Calibration and numerical simulation of nanoparticle surface area monitor (TSI model 3550 NSAM). J Nanopart Res 9:61–69. doi: 10.1007/s11051-006-9153-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Asbach
    • 1
    Email author
  • H. Fissan
    • 1
  • B. Stahlmecke
    • 1
  • T. A. J. Kuhlbusch
    • 1
  • D. Y. H. Pui
    • 2
  1. 1.Institute of Energy and Environmental Technology e.V. (IUTA)Air Quality & Sustainable Nanotechnology UnitDuisburgGermany
  2. 2.Mechanical Engineering DepartmentUniversity of MinnesotaMinneapolisUSA

Personalised recommendations